Predictors and moderators of three online interventions for eating disorder symptoms in a randomized controlled trial.
eHealth
eating disorders
expert patient
internet-based intervention
moderators
predictors
randomized controlled trial
recursive partitioning
Journal
The International journal of eating disorders
ISSN: 1098-108X
Titre abrégé: Int J Eat Disord
Pays: United States
ID NLM: 8111226
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
07
06
2023
received:
09
03
2023
accepted:
27
06
2023
pubmed:
11
7
2023
medline:
11
7
2023
entrez:
11
7
2023
Statut:
ppublish
Résumé
To optimize treatment recommendations for eating disorders, it is important to investigate whether some individuals may benefit more (or less) from certain treatments. The current study explored predictors and moderators of an automated online self-help intervention "Featback" and online support from a recovered expert patient. Data were used from a randomized controlled trial. For a period of 8 weeks, participants aged 16 or older with at least mild eating disorder symptoms were randomized to four conditions: (1) Featback, (2) chat or e-mail support from an expert patient, (3) Featback with expert-patient support, and (4) a waitlist. A mixed-effects partitioning method was used to see if age, educational level, BMI, motivation to change, treatment history, duration of eating disorder, number of binge eating episodes in the past month, eating disorder pathology, self-efficacy, anxiety and depression, social support, or self-esteem predicted or moderated intervention outcomes in terms of eating disorder symptoms (primary outcome), and symptoms of anxiety and depression (secondary outcome). Higher baseline social support predicted less eating disorder symptoms 8 weeks later, regardless of condition. No variables emerged as moderator for eating disorder symptoms. Participants in the three active conditions who had not received previous eating disorder treatment, experienced larger reductions in anxiety and depression symptoms. The investigated online low-threshold interventions were especially beneficial for treatment-naïve individuals, but only in terms of secondary outcomes, making them well-suited for early intervention. The study results also highlight the importance of a supportive environment for individuals with eating disorder symptoms. To optimize treatment recommendations it is important to investigate what works for whom. For an internet-based intervention for eating disorders developed in the Netherlands, individuals who had never received eating disorder treatment seemed to benefit more from the intervention than those who had received eating disorder treatment, because they experienced larger reductions in symptoms of depression and anxiety. Stronger feelings of social support were related to less eating disorder symptoms in the future.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1909-1918Subventions
Organisme : ZonMw
ID : 636310001
Pays : Netherlands
Informations de copyright
© 2023 The Authors. International Journal of Eating Disorders published by Wiley Periodicals LLC.
Références
Aardoom, J. J., Dingemans, A. E., Fokkema, M., Spinhoven, P., & Van Furth, E. F. (2017). Moderators of change in an internet-based intervention for eating disorders with different levels of therapist support: What works for whom? Behaviour Research and Therapy, 89, 66-74. https://doi.org/10.1016/j.brat.2016.11.012
Aardoom, J. J., Dingemans, A. E., Spinhoven, P., & Van Furth, E. F. (2013). Treating eating disorders over the internet: A systematic review and future research directions. International Journal of Eating Disorders, 46(6), 539-552. https://doi.org/10.1002/eat.22135
Andersson, G., Carlbring, P., & Grimlund, A. (2008). Predicting treatment outcome in internet versus face to face treatment of panic disorder. Computers in Human Behavior, 24(5), 1790-1801. https://doi.org/10.1016/j.chb.2008.02.003
Arcelus, J., Haslam, M., Farrow, C., & Meyer, C. (2013). The role of interpersonal functioning in the maintenance of eating psychopathology: A systematic review and testable model. Clinical Psychology Review, 33(1), 156-167. https://doi.org/10.1016/j.cpr.2012.10.009
Bauer, S., Winn, S., Schmidt, U., & Kordy, H. (2005). Construction, scoring and validation of the short evaluation of eating disorders (SEED). European Eating Disorders Review, 13, 191-200. https://doi.org/10.1002/erv.637
Blumberger, D. M., Mulsant, B. H., Emeremni, C., Houck, P., Andreescu, C., Mazumdar, S., Whyte, E., Rothschild, A. J., Flint, A. J., & Meyers, B. S. (2011). Impact of prior pharmacotherapy on remission of psychotic depression in a randomized controlled trial. Journal of Psychiatric Research, 45(7), 896-901. https://doi.org/10.1016/j.jpsychires.2011.01.003
Buchalter, E. L. F., Oughli, H. A., Lenze, E. J., Dixon, D., Miller, J. P., Blumberger, D. M., Karp, J. F., Reynolds, C. F., III, & Mulsant, B. H. (2019). Predicting remission in late-life major depression. The Journal of Clinical Psychiatry, 80(6), 18m12483. https://doi.org/10.4088/JCP.18m12483
Buuren, S. V., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1-67. https://doi.org/10.18637/jss.v045.i03
Collins, R. L. (1996). For better or worse: The impact of upward social comparison on self-evaluations. Psychological Bulletin, 119(1), 51-69. https://doi.org/10.1037/0033-2909.119.1.51
Cooper, Z., Allen, E., Bailey-Straebler, S., Basden, S., Murphy, R., O'Connor, M. E., & Fairburn, C. G. (2016). Predictors and moderators of response to enhanced cognitive behaviour therapy and interpersonal psychotherapy for the treatment of eating disorders. Behaviour Research and Therapy, 84, 9-13. https://doi.org/10.1016/j.brat.2016.07.002
de Vos, J. A., Radstaak, M., Bohlmeijer, E. T., & Westerhof, G. J. (2022). Modelling trajectories of change in psychopathology and well-being during eating disorder outpatient treatment. Psychotherapy Research, 1-13, 415-427. https://doi.org/10.1080/10503307.2022.2139647
DeRubeis, R. J. (2019). The history, current status, and possible future of precision mental health. Behaviour Research and Therapy, 123, 103506. https://doi.org/10.1016/j.brat.2019.103506
DeRubeis, R. J., Cohen, Z. D., Forand, N. R., Fournier, J. C., Gelfand, L. A., & Lorenzo-Luaces, L. (2014). The personalized advantage index: Translating research on prediction into individualized treatment recommendations. A Demonstration. PLoS One, 9(1), e83875. https://doi.org/10.1371/journal.pone.0083875
Erceg-Hurn, D. M., Campbell, B. N. C., & McEvoy, P. M. (2023). What explains the failure to identify replicable moderators of symptom change in social anxiety disorder? Journal of Anxiety Disorders, 94, 102676. https://doi.org/10.1016/j.janxdis.2023.102676
Fairburn, C. G., & Beglin, S. J. (2008). Assessment of eating disorders: Interview or self-report questionnaire? International Journal of Eating Disorders, 16(4), 363-370. https://doi.org/10.1002/1098-108X(199412)16:4<363::AID-EAT2260160405>3.0.CO;2-%23
Fokkema, M., Smits, N., Zeileis, A., Hothorn, T., & Kelderman, H. (2018). Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees. Behavior Research Methods, 50(5), 2016-2034. https://doi.org/10.3758/s13428-017-0971-x
Frison, L., & Pocock, S. J. (1992). Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for design. Statistics in Medicine, 11(13), 1685-1704. https://doi.org/10.1002/sim.4780111304
Halmi, K. A. (2013). Perplexities of treatment resistence in eating disorders. BMC Psychiatry, 13(1), 292. https://doi.org/10.1186/1471-244X-13-292
Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301-304. https://doi.org/10.1056/NEJMp1006304
Hothorn, T., & Zeileis, A. (2015). Partykit: A modular toolkit for recursive partitioning in R. Journal of Machine Learning Research, 16, 3905-3909.
Huibers, M. J. H., Cohen, Z. D., Lemmens, L. H. J. M., Arntz, A., Peeters, F. P. M. L., Cuijpers, P., & DeRubeis, R. J. (2015). Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach. PLoS One, 10(11), e0140771. https://doi.org/10.1371/journal.pone.0140771
Kass, A. E., Trockel, M., Safer, D. L., Sinton, M. M., Cunning, D., Rizk, M. T., Genkin, B. H., Weisman, H. L., Bailey, J. O., Jacobi, C., Wilfley, D. E., & Taylor, C. B. (2014). Internet-based preventive intervention for reducing eating disorder risk: A randomized controlled trial comparing guided with unguided self-help. Behaviour Research and Therapy, 63, 90-98. https://doi.org/10.1016/j.brat.2014.09.010
Kazdin, A. E., Fitzsimmons-Craft, E. E., & Wilfley, D. E. (2017). Addressing critical gaps in the treatment of eating disorders. International Journal of Eating Disorders, 50(3), 170-189. https://doi.org/10.1002/eat.22670
Keeton, C. P., Perry-Jenkins, M., & Sayer, A. G. (2008). Sense of control predicts depressive and anxious symptoms across the transition to parenthood. Journal of Family Psychology, 22(2), 212-221. https://doi.org/10.1037/0893-3200.22.2.212
Kessner, S., Forkmann, K., Ritter, C., Wiech, K., Ploner, M., & Bingel, U. (2014). The effect of treatment history on therapeutic outcome: Psychological and neurobiological underpinnings. PLoS One, 9(10), e109014. https://doi.org/10.1371/journal.pone.0109014
Killen, J. D., Taylor, C. B., Hayward, C., Wilson, D. M., Haydel, K. F., Hammer, L. D., Simmonds, B., Robinsone, T. N., Litt, I., Varady, A., & Kraemer, H. C. (1994). Persuit of thinness and onset of eating disorder symptoms in a community sample of adolescent girls: A three-year prospective analysis. International Journal of Eating Disorders, 16(3), 227-238. https://doi.org/10.1002/1098-108X(199411)16:3<227::AID-EAT2260160303>3.0.CO;2-L
Kroenke, K., Spitzer, R. L., Williams, J. B. W., & Löwe, B. (2009). An ultra-brief screening scale for anxiety and depression: The PHQ-4. Psychosomatics, 50(6), 613-621. https://doi.org/10.1176/appi.psy.50.6.613
Levallius, J., Clinton, D., Högdahl, L., & Norring, C. (2020). Personality as predictor of outcome in internet-based treatment of bulimic eating disorders. Eating Behaviors, 36, 101360. https://doi.org/10.1016/j.eatbeh.2019.101360
Linardon, J., de la Piedad Garcia, X., & Brennan, L. (2017). Predictors, moderators, and mediators of treatment outcome following manualised cognitive-Behavioural therapy for eating disorders: A systematic review. European Eating Disorders Review, 25(1), 3-12. https://doi.org/10.1002/erv.2492
Linardon, J., Shatte, A., Messer, M., Firth, J., & Fuller-Tyszkiewicz, M. (2020). E-mental health interventions for the treatment and prevention of eating disorders: An updated systematic review and meta-analysis. Journal of Consulting and Clinical Psychology, 88(11), 994-1007. https://doi.org/10.1037/ccp0000575
Linville, D., Brown, T., Sturm, K., & McDougal, T. (2012). Eating disorders and social support: Perspectives of recovered individuals. Eating Disorders, 20(3), 216-231. https://doi.org/10.1080/10640266.2012.668480
Loucas, C. E., Fairburn, C. G., Whittington, C., Pennant, M. E., Stockton, S., & Kendall, T. (2014). E-therapy in the treatment and prevention of eating disorders: A systematic review and meta-analysis. Behaviour Research and Therapy, 63, 122-131. https://doi.org/10.1016/j.brat.2014.09.011
Lydecker, J. A., & Grilo, C. M. (2022). Psychiatric comorbidity as predictor and moderator of binge-eating disorder treatment outcomes: An analysis of aggregated randomized controlled trials. Psychological Medicine, 52(16), 4085-4093. https://doi.org/10.1017/S0033291721001045
Matherne, C. E., Watson, H., Fassnacht, D. B., Ali, K., Zerwas, S., Peat, C., Runfola, C., Levine, M. D., Marcus, M. D., Zimmer, B., Moessner, M., Crosby, R., & Bulik, C. M. (2022). An exploratory investigation of predictors of outcome in face-to-face and online cognitive-behavioural therapy for bulimia nervosa. European Eating Disorders Review, 30(4), 373-387. https://doi.org/10.1002/erv.2898
Melioli, T., Bauer, S., Franko, D. L., Moessner, M., Ozer, F., Chabrol, H., & Rodgers, R. F. (2016). Reducing eating disorder symptoms and risk factors using the internet: A meta-analytic review. International Journal of Eating Disorders, 49(1), 19-31. https://doi.org/10.1002/eat.22477
Perlis, R. H. (2016). Abandoning personalization to get to precision in the pharmacotherapy of depression. World Psychiatry, 15(3), 228-235. https://doi.org/10.1002/wps.20345
Pittock, A., Hodges, L., & Lawrie, S. M. (2018). The effectiveness of internet-delivered cognitive behavioural therapy for those with bulimic symptoms: A systematic review. BMC Research Notes, 11, 748. https://doi.org/10.1186/s13104-018-3843-2
R Core Team. (2021). R: A language and environment for statistical computing. www.R-project.org
Rohrbach, P. J., Dingemans, A. E., Spinhoven, P., den Akker-Van Marle, E., Van Ginkel, J. R., Fokkema, M., Moessner, M., Bauer, S., & Van Furth, E. F. (2019). A randomized controlled trial of an internet-based intervention for eating disorders and the added value of expert-patient support: Study protocol. Trials, 20(1), 1-17. https://doi.org/10.1186/s13063-019-3574-2
Rohrbach, P. J., Dingemans, A. E., Spinhoven, P., Van Ginkel, J. R., Fokkema, M., Wilderjans, T. F., Bauer, S., & Van Furth, E. F. (2022). Effectiveness of an online self-help program, expert-patient support, and their combination for eating disorders: Results from a randomized controlled trial. International Journal of Eating Disorders, 55(10), 1361-1373. https://doi.org/10.1002/eat.23785
Rohrbach, P. J., Dingemans, A. E., van Furth, E. F., Spinhoven, P., van Ginkel, J. R., Bauer, S., & van den Akker-Van Marle, M. E. (2022). Cost-effectiveness of three internet-based interventions for eating disorders: A randomized controlled trial. International Journal of Eating Disorders, 55(8), 1143-1155. https://doi.org/10.1002/eat.23763
Rosenberg, M. (1965). Society and the adolescent self-image. University Press. https://doi.org/10.1515/9781400876136
Schwarzer, R., & Jerusalem, M. (1995). Generalized self-efficacy scale. In J. Weinman, S. Wright, & M. Johnston (Eds.), Measures in health psychology, a user's portfolio: Causal and control beliefs (pp. 35-37). NFER-NELSON.
Stice, E., Gau, J. M., Rohde, P., & Shaw, H. (2017). Risk factors that predict future onset of each DSM-5 eating disorder: Predictive specificity in high-risk adolescent females. Journal of Abnormal Psychology, 126(1), 38-51. https://doi.org/10.1037/abn0000219
Tahmassian, K., & Jalali Moghadam, N. (2011). Relationship between self-efficacy and symptoms of anxiety, depression, worry and social avoidance in a normal sample of students. Iranian Journal of Psychiatry and Behavioral Sciences, 5(2), 91-98.
Tunvirachaisakul, C., Gould, R. L., Coulson, M. C., Ward, E. V., Reynolds, G., Gathercole, R. L., Grocott, H., Supasitthumrong, T., Tunvirachaisakul, A., Kimona, K., & Howard, R. J. (2018). Predictors of treatment outcome in depression in later life: A systematic review and meta-analysis. Journal of Affective Disorders, 227, 164-182. https://doi.org/10.1016/j.jad.2017.10.008
Vall, E., & Wade, T. D. (2015). Predictors of treatment outcome in individuals with eating disorders: A systematic review and meta-analysis. International Journal of Eating Disorders, 48(7), 946-971. https://doi.org/10.1002/eat.22411
van Bree, E. S. J., Slof-Op't Landt, M. C. T., & van Furth, E. F. (2023). Predictors of recovery in eating disorders: A focus on different definitions. International Journal of Eating Disorders, 56(6), 1240-1245. https://doi.org/10.1002/eat.23950
van Bronswijk, S. C., Bruijniks, S. J. E., Lorenzo-Luaces, L., Derubeis, R. J., Lemmens, L. H. J. M., Peeters, F. P. M. L., & Huibers, Marcus, J. H. (2021). Cross-trial prediction in psychotherapy: External validation of the personalized advantage index using machine learning in two Dutch randomized trials comparing CBT versus IPT for depression. Psychotherapy Research, 31(1), 78-91. https://doi.org/10.1080/10503307.2020.1823029
van Bronswijk, S. C., DeRubeis, R. J., Lemmens, L. H. J. M., Peeters, F. P. M. L., Keefe, J. R., Cohen, Z. D., & Huibers, M. J. H. (2021). Precision medicine for long-term depression outcomes using the personalized advantage index approach: Cognitive therapy or interpersonal psychotherapy? Psychological Medicine, 51(2), 279-289. https://doi.org/10.1017/S0033291719003192
van Eijk, L. M., Kempen, G. I. J. M., & van Sonderen, F. L. P. (1994). Een korte schaal voor het meten van sociale steun bij ouderen: de SSL-12-I. Tijdschrift voor Gerontologie en Geriatrie, 25(5), 192-196.
Völker, U., Jacobi, C., Trockel, M. T., & Taylor, C. B. (2014). Moderators and mediators of outcome in internet-based indicated prevention for eating disorders. Behaviour Research and Therapy, 63, 114-121. https://doi.org/10.1016/j.brat.2014.09.008
Wagner, G., Penelo, E., Nobis, G., Mayrhofer, A., Wanner, C., Schau, J., Spitzer, M., Gwinner, P., Trofaier, M.-L., Imgart, H., Fernandez-Aranda, F., & Karwautz, A. (2015). Predictors for good therapeutic outcome and drop-out in technology assisted guided self-help in the treatment of bulimia nervosa and bulimia like phenotype. European Eating Disorders Review, 23(2), 163-169. https://doi.org/10.1002/erv.2336
Wayment, H. A., Eiler, B. A., & Cavolo, K. (2020). Self-evaluation strategies in college women trying to lose weight: The relative use of objective and social comparison information. Frontiers in Psychology, 11, 1254. https://doi.org/10.3389/fpsyg.2020.01254
Wood, A. M., White, I. R., & Royston, P. (2008). How should variable selection be performed with multiply imputed data? Statistics in Medicine, 27(17), 3227-3246. https://doi.org/10.1002/sim.3177
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492-514. https://doi.org/10.1198/106186008X319331