The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes.
Journal
NPJ systems biology and applications
ISSN: 2056-7189
Titre abrégé: NPJ Syst Biol Appl
Pays: England
ID NLM: 101677786
Informations de publication
Date de publication:
11 07 2023
11 07 2023
Historique:
received:
11
03
2023
accepted:
19
06
2023
medline:
13
7
2023
pubmed:
12
7
2023
entrez:
11
7
2023
Statut:
epublish
Résumé
Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and differentiate in the presence of either a single PPDP or two incompatible PPDPs. We relate this virtual experiment to the pathological interactions between two PPDPs, α-synuclein and Tubulin Polymerization Promoting Protein/p25, in neurodegenerative disorders. Finally, we discuss the implications of the Sherpa hypothesis for aptamer-based therapies of such disorders.
Identifiants
pubmed: 37433867
doi: 10.1038/s41540-023-00291-8
pii: 10.1038/s41540-023-00291-8
pmc: PMC10336114
doi:
Substances chimiques
cypermethrin
1TR49121NP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
31Informations de copyright
© 2023. The Author(s).
Références
FEBS Lett. 2015 Jan 2;589(1):15-22
pubmed: 25436423
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298
pubmed: 28225081
Cells. 2020 Feb 04;9(2):
pubmed: 32033023
Transl Neurodegener. 2015 Oct 26;4:20
pubmed: 26504519
Protein Sci. 2014 May;23(5):539-50
pubmed: 24532081
J Mol Recognit. 2005 Sep-Oct;18(5):343-84
pubmed: 16094605
Biol Cell. 2004 Dec;96(9):701-11
pubmed: 15567525
FEBS Lett. 2015 Sep 14;589(19 Pt A):2533-42
pubmed: 26226339
Curr Alzheimer Res. 2008 Jun;5(3):260-87
pubmed: 18537543
Int J Mol Sci. 2019 Jan 02;20(1):
pubmed: 30609739
Neurotherapeutics. 2022 Jan;19(1):173-185
pubmed: 34729690
Neurobiol Dis. 2004 Nov;17(2):155-62
pubmed: 15474353
Annu Rev Biophys. 2008;37:215-46
pubmed: 18573080
Biochim Biophys Acta Mol Basis Dis. 2017 Jan;1863(1):310-323
pubmed: 27671864
J Biol Chem. 2016 Mar 25;291(13):6681-8
pubmed: 26851286
Prog Mol Biol Transl Sci. 2019;166:1-17
pubmed: 31521229
Mol Ther Nucleic Acids. 2019 Sep 6;17:726-740
pubmed: 31437653
Sci Rep. 2016 Sep 15;6:33289
pubmed: 27628239
Front Chem. 2021 Mar 11;9:603639
pubmed: 33791275
Cell. 2019 Sep 19;179(1):132-146.e14
pubmed: 31522887
Glia. 2010 Jan 15;58(2):157-68
pubmed: 19606501
Commun Biol. 2019 Oct 30;2:395
pubmed: 31701024
Expert Rev Proteomics. 2010 Aug;7(4):543-64
pubmed: 20653509
Biomedicines. 2022 Dec 13;10(12):
pubmed: 36551997
Mol Med. 2008 Jul-Aug;14(7-8):451-64
pubmed: 18368143
Nature. 1997 Aug 28;388(6645):839-40
pubmed: 9278044
Neurosci Lett. 1998 Jun 19;249(2-3):180-2
pubmed: 9682846
Mol Neurobiol. 2013 Apr;47(2):495-508
pubmed: 22622968
Mol Cell Proteomics. 2013 Dec;12(12):3543-58
pubmed: 23966418
Biochim Biophys Acta. 2014 Apr;1842(4):547-57
pubmed: 24463170
Structure. 2019 Feb 5;27(2):229-240.e4
pubmed: 30581045
Lancet. 2015 Aug 29;386(9996):896-912
pubmed: 25904081
Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646
pubmed: 36370105
Nat Struct Mol Biol. 2016 May;23(5):409-15
pubmed: 27018801
Mol Ther Nucleic Acids. 2018 Jun 1;11:228-242
pubmed: 29858057
FASEB J. 2001 Sep;15(11):2054-6
pubmed: 11511523
Biochem Biophys Res Commun. 2011 May 27;409(1):137-41
pubmed: 21565174
Acta Neuropathol Commun. 2014 Sep 11;2:136
pubmed: 25208467
Front Mol Biosci. 2021 May 18;8:666026
pubmed: 34084775
J Mol Biol. 2023 Jan 15;435(1):167714
pubmed: 35787839
J Biol Chem. 2010 Jun 4;285(23):17896-906
pubmed: 20308065
Cell Mol Neurobiol. 2022 Oct;42(7):2075-2095
pubmed: 33934227
J Chem Neuroanat. 2011 Dec;42(4):242-8
pubmed: 21167933
Brain Pathol. 2023 May;33(3):e13131
pubmed: 36368713
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11113-11115
pubmed: 31110017
J Pharm Pharmacol. 2021 Jun 8;73(7):862-873
pubmed: 33822122
Exp Cell Res. 2007 Dec 10;313(20):4091-106
pubmed: 18028908
Fluids Barriers CNS. 2014 Jul 31;11:17
pubmed: 25093076
Am J Pathol. 1998 Apr;152(4):879-84
pubmed: 9546347
Science. 1991 Jul 5;253(5015):49-53
pubmed: 1905840
FEBS J. 2005 Oct;272(20):5129-48
pubmed: 16218947
J Neurosci. 1988 Aug;8(8):2804-15
pubmed: 3411354
Expert Rev Proteomics. 2017 Apr;14(4):301-309
pubmed: 28271739
Chem Soc Rev. 2011 Mar;40(3):1623-34
pubmed: 21049125
PLoS Comput Biol. 2014 Jun 26;10(6):e1003674
pubmed: 24968255
F1000Res. 2017 Apr 20;6:525
pubmed: 28491292
Acta Neuropathol. 2019 Sep;138(3):415-441
pubmed: 31011860
J Neurochem. 1993 Jan;60(1):228-35
pubmed: 8417144
Biochim Biophys Acta. 2015 Dec;1852(12):2653-61
pubmed: 26407520
Biochem Biophys Res Commun. 2021 Mar 26;546:7-14
pubmed: 33556638
Biology (Basel). 2021 Oct 12;10(10):
pubmed: 34681133
Biochemistry. 2005 Feb 15;44(6):1989-2000
pubmed: 15697224
PLoS Biol. 2017 Mar 3;15(3):e2000374
pubmed: 28257421
Int J Mol Sci. 2016 Nov 10;17(11):
pubmed: 27834926
Biosci Rep. 2010 Mar 17;30(4):243-55
pubmed: 20337599
Neurochem Int. 2018 Oct;119:84-96
pubmed: 29305061
Int J Mol Sci. 2017 Dec 19;18(12):
pubmed: 29257115
Cells. 2021 Oct 27;10(11):
pubmed: 34831132
F1000Res. 2017 Nov 30;6:2072
pubmed: 29225795
Molecules. 2019 Jan 15;24(2):
pubmed: 30650656
Clin Chim Acta. 2019 Aug;495:318-325
pubmed: 31051162
Nat Rev Mol Cell Biol. 2015 Jan;16(1):18-29
pubmed: 25531225
Acta Neuropathol. 2007 Feb;113(2):213-5
pubmed: 17136548