Abdominal fat quantification using convolutional networks.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 20 12 2022
accepted: 03 05 2023
revised: 21 04 2023
medline: 27 11 2023
pubmed: 12 7 2023
entrez: 12 7 2023
Statut: ppublish

Résumé

To present software for automated adipose tissue quantification of abdominal magnetic resonance imaging (MRI) data using fully convolutional networks (FCN) and to evaluate its overall performance-accuracy, reliability, processing effort, and time-in comparison with an interactive reference method. Single-center data of patients with obesity were analyzed retrospectively with institutional review board approval. Ground truth for subcutaneous (SAT) and visceral adipose tissue (VAT) segmentation was provided by semiautomated region-of-interest (ROI) histogram thresholding of 331 full abdominal image series. Automated analyses were implemented using UNet-based FCN architectures and data augmentation techniques. Cross-validation was performed on hold-out data using standard similarity and error measures. The FCN models reached Dice coefficients of up to 0.954 for SAT and 0.889 for VAT segmentation during cross-validation. Volumetric SAT (VAT) assessment resulted in a Pearson correlation coefficient of 0.999 (0.997), relative bias of 0.7% (0.8%), and standard deviation of 1.2% (3.1%). Intraclass correlation (coefficient of variation) within the same cohort was 0.999 (1.4%) for SAT and 0.996 (3.1%) for VAT. The presented methods for automated adipose-tissue quantification showed substantial improvements over common semiautomated approaches (no reader dependence, less effort) and thus provide a promising option for adipose tissue quantification. Deep learning techniques will likely enable image-based body composition analyses on a routine basis. The presented fully convolutional network models are well suited for full abdominopelvic adipose tissue quantification in patients with obesity. • This work compared the performance of different deep-learning approaches for adipose tissue quantification in patients with obesity. • Supervised deep learning-based methods using fully convolutional networks  were suited best. • Measures of accuracy were equal to or better than the operator-driven approach.

Identifiants

pubmed: 37436508
doi: 10.1007/s00330-023-09865-w
pii: 10.1007/s00330-023-09865-w
pmc: PMC10667157
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8957-8964

Informations de copyright

© 2023. The Author(s).

Références

Higgins MI, Marquardt JP, Master VA, Fintelmann FJ, Psutka SP (2021) Machine learning in body composition analysis. Eur Urol Focus 7(4):713–716
doi: 10.1016/j.euf.2021.03.013 pubmed: 33771476
Cornier M-A, Dabelea D, Hernandez TL et al (2008) The metabolic syndrome. Endocr Rev 29(7):777–822
doi: 10.1210/er.2008-0024 pubmed: 18971485 pmcid: 5393149
Després J-P, Lemieux I, Bergeron J et al (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28(6):1039–1049
doi: 10.1161/ATVBAHA.107.159228 pubmed: 18356555
Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116(1):39–48
doi: 10.1161/CIRCULATIONAHA.106.675355 pubmed: 17576866
Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21(6):697–738
doi: 10.1210/edrv.21.6.0415 pubmed: 11133069
Miyazaki Y, DeFronzo RA (2009) Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type. Cardiovasc Diabetol 8:44
doi: 10.1186/1475-2840-8-44 pubmed: 19656356 pmcid: 2729732
Prentice AM, Jebb SA (2001) Beyond body mass index. Obes Rev 2(3):141–147
doi: 10.1046/j.1467-789x.2001.00031.x pubmed: 12120099
Blüher M (2020) Metabolically Healthy Obesity. Endocr Rev 41(3)
Lancaster JL, Ghiatas AA, Alyassin A, Kilcoyne RF, Bonora E, DeFronzo RA (1991) Measurement of abdominal fat with T1-weighted MR images. J Magn Reson Imaging 1(3):363–369
doi: 10.1002/jmri.1880010315 pubmed: 1802150
Bonekamp S, Ghosh P, Crawford S et al (2008) Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Int J Obes (Lond) 32(1):100–111
doi: 10.1038/sj.ijo.0803696 pubmed: 17700582
Positano V, Gastaldelli A, Sironi AM, Santarelli MF, Lombardi M, Landini L (2004) An accurate and robust method for unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 20(4):684–689
doi: 10.1002/jmri.20167 pubmed: 15390229
Thörmer G, Bertram HH, Garnov N et al (2013) Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging 37(5):1144–1150
doi: 10.1002/jmri.23890 pubmed: 23124651
Kullberg J, Ahlström H, Johansson L, Frimmel H (2007) Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. Int J Obes (Lond) 31(12):1806–1817
doi: 10.1038/sj.ijo.0803671 pubmed: 17593903
Positano V, Cusi K, Santarelli MF et al (2008) Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 28(2):403–410
doi: 10.1002/jmri.21448 pubmed: 18666138
Azad R, Aghdam EK, Rauland A et al (2022) Medical image segmentation review: the success of U-Net. Available via http://arxiv.org/pdf/2211.14830v1 . Accessed 21 Apr 2023
Stange R, Linder N, Schaudinn A, Kahn T, Busse H (2018) Dicomflex: a novel framework for efficient deployment of image analysis tools in radiological research. PLoS One 13(9):e0202974
doi: 10.1371/journal.pone.0202974 pubmed: 30204771 pmcid: 6133368
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Available via http://arxiv.org/pdf/1505.04597v1 . Accessed 21 Apr 2023
Roy AG, Conjeti S, Navab N, Wachinger C (2018) QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. Available via http://arxiv.org/pdf/1801.04161v2 . Accessed 21 Apr 2023
Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G (2020) Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg 10(6):1275–1285
doi: 10.21037/qims-19-1090 pubmed: 32550136 pmcid: 7276369
Estrada S, Conjeti S, Ahmad M, Navab N, Reuter M (2018) Competition vs. concatenation in skip connections of fully convolutional networks. In: Shi Y, Suk H-I, Liu M (eds) Machine Learning in Medical Imaging. Springer International Publishing. Cham, pp 214–222
Estrada S, Lu R, Conjeti S et al (2020) FatSegNet a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn Reson Med 83(4):1471–1483
doi: 10.1002/mrm.28022 pubmed: 31631409
Greco F, Mallio CA (2021) Artificial intelligence and abdominal adipose tissue analysis: a literature review. Quant Imaging Med Surg 11(10):4461–4474
doi: 10.21037/qims-21-370 pubmed: 34603998 pmcid: 8408793
Koitka S, Kroll L, Malamutmann E, Oezcelik A, Nensa F (2021) Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks. Eur Radiol 31(4):1795–1804
doi: 10.1007/s00330-020-07147-3 pubmed: 32945971
Shen J, Baum T, Cordes C et al (2016) Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: application to weight-loss in obesity. Eur J Radiol 85(9):1613–1621
doi: 10.1016/j.ejrad.2016.06.006 pubmed: 27501897
Küstner T, Hepp T, Fischer M et al (2020) Fully automated and standardized segmentation of adipose tissue compartments via deep learning in 3D whole-body MRI of epidemiologic cohort studies. Radiol Artif Intell 2(6):e200010
doi: 10.1148/ryai.2020200010 pubmed: 33937847 pmcid: 8082356
Sadananthan SA, Prakash B, Leow MK-S et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41(4):924–934
doi: 10.1002/jmri.24655 pubmed: 24803305
Shen N, Li X, Zheng S et al (2019) Automated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learning. Magn Reson Imaging 64:28–36
doi: 10.1016/j.mri.2019.04.007 pubmed: 31004712
Langner T, Gustafsson FK, Avelin B, Strand R, Ahlström H, Kullberg J (2021) Uncertainty-aware body composition analysis with deep regression ensembles on UK Biobank MRI. Comput Med Imaging Graph 93:101994
doi: 10.1016/j.compmedimag.2021.101994 pubmed: 34624770
Bhanu PK, Arvind CS, Yeow LY, Chen WX, Lim WS, Tan CH (2022) CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies. MAGMA 35(2):205–220
doi: 10.1007/s10334-021-00946-9 pubmed: 34338926
Maddalo M, Zorza I, Zubani S et al (2017) Validation of a free software for unsupervised assessment of abdominal fat in MRI. Phys Med 37:24–31
Borga M (2018) MRI adipose tissue and muscle composition analysis-a review of automation techniques. Br J Radiol 91(1089):20180252
doi: 10.1259/bjr.20180252 pubmed: 30004791 pmcid: 6223175
Nowak S, Theis M, Wichtmann BD et al (2022) End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT. Eur Radiol 32(5):3142–3151
doi: 10.1007/s00330-021-08313-x pubmed: 34595539
Goodfellow IJ, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial networks. available via http://arxiv.org/pdf/1406.2661v1 . Accessed 21 Apr 2023
Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. Available via http://arxiv.org/pdf/1701.07875v3 . Accessed 21 Apr 2023

Auteurs

Daniel Schneider (D)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.
Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, 04103, Leipzig, Germany.

Tobias Eggebrecht (T)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.
Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany.

Anna Linder (A)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.

Nicolas Linder (N)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.
Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany.

Alexander Schaudinn (A)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.

Matthias Blüher (M)

Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany.
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany.

Timm Denecke (T)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany.

Harald Busse (H)

Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Liebigstr. 20, Haus 4, 04103, Leipzig, Germany. harald.busse@medizin.uni-leipzig.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH