Role of the basal ganglia in innate and learned behavioural sequences.
chunking
innate behaviour
learned behaviour
neuropeptides
striatum
Journal
Reviews in the neurosciences
ISSN: 2191-0200
Titre abrégé: Rev Neurosci
Pays: Germany
ID NLM: 8711016
Informations de publication
Date de publication:
14 Jul 2023
14 Jul 2023
Historique:
received:
31
03
2023
accepted:
24
06
2023
medline:
12
7
2023
pubmed:
12
7
2023
entrez:
12
7
2023
Statut:
aheadofprint
Résumé
Integrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
Identifiants
pubmed: 37437141
pii: revneuro-2023-0038
doi: 10.1515/revneuro-2023-0038
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 the author(s), published by De Gruyter, Berlin/Boston.
Références
Aoki, S., Liu, A.W., Zucca, A., Zucca, S., and Wickens, J.R. (2015). Role of striatal cholinergic interneurons in set-shifting in the rat. J. Neurosci. 35: 9424–9431, https://doi.org/10.1523/jneurosci.0490-15.2015 .
doi: 10.1523/jneurosci.0490-15.2015
Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12: 366–375, https://doi.org/10.1016/0166-2236(89)90074-x .
doi: 10.1016/0166-2236(89)90074-x
Aldridge, J.W. and Berridge, K.C. (1998). Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J. Neurosci. 18: 2777–2787, https://doi.org/10.1523/jneurosci.18-07-02777.1998 .
doi: 10.1523/jneurosci.18-07-02777.1998
Aldridge, J.W., Berridge, K.C., Herman, M., and Zimmer, L. (1993). Neuronal coding of serial order: syntax of grooming in the neostriatum. Psychol. Sci. 4: 391–395, https://doi.org/10.1111/j.1467-9280.1993.tb00587.x .
doi: 10.1111/j.1467-9280.1993.tb00587.x
Aldridge, J.W., Berridge, K.C., and Rosen, A.R. (2004). Basal ganglia neural mechanisms of natural movement sequences. Can. J. Physiol. Pharmacol. 82: 732–739, https://doi.org/10.1139/y04-061 .
doi: 10.1139/y04-061
Alexander, G.E. and Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13: 266–271, https://doi.org/10.1016/0166-2236(90)90107-l .
doi: 10.1016/0166-2236(90)90107-l
Al Tannir, R., Pautrat, A., Baufreton, J., Overton, P.G., and Coizet, V. (2023). The subthalamic nucleus: a hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol. 21: 22–30, https://doi.org/10.2174/1570159x20666220718113548 .
doi: 10.2174/1570159x20666220718113548
Anderson, J.J., Chase, T.N., and Engber, T.M. (1993). Substance P increases release of acetylcholine in the dorsal striatum of freely moving rats. Brain Res. 623: 189–194, https://doi.org/10.1016/0006-8993(93)91426-s .
doi: 10.1016/0006-8993(93)91426-s
Aosaki, T. and Kawaguchi, Y. (1996). Actions of Substance P on rat neostriatal neurons in vitro. J. Neurosci. 16: 5141–5153, https://doi.org/10.1523/jneurosci.16-16-05141.1996 .
doi: 10.1523/jneurosci.16-16-05141.1996
Bachá-Méndez, G., Reid, A.K., and Mendoza-Soylovna, A. (2007). Resurgence of integrated behavioral units. J. Exp. Anal. Behav. 87: 5–24, https://doi.org/10.1901/jeab.2007.55-05 .
doi: 10.1901/jeab.2007.55-05
Balleine, B.W., Liljeholm, M., and Ostlund, S.B. (2009). The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res. 199: 43–52, https://doi.org/10.1016/j.bbr.2008.10.034 .
doi: 10.1016/j.bbr.2008.10.034
Bass, A.H. (2014). Central pattern generator for vocalization: is there a vertebrate morphotype? Curr. Opin. Neurobiol. 28: 94–100, https://doi.org/10.1016/j.conb.2014.06.012 .
doi: 10.1016/j.conb.2014.06.012
Berkowitz, A., Roberts, A., and Soffe, S.R. (2010). Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front. Behav. Neurosci. 4: 36, https://doi.org/10.3389/fnbeh.2010.00036 .
doi: 10.3389/fnbeh.2010.00036
Berridge, K.C. (1989). Progressive degradation of serial grooming chains by descending decerebration. Behav. Brain Res. 33: 241–253, https://doi.org/10.1016/s0166-4328(89)80119-6 .
doi: 10.1016/s0166-4328(89)80119-6
Berridge, K.C. (1990). Comparative fine structure of action: rules of form and sequence in the grooming patterns of six rodent species. Behaviour 113: 21–56, https://doi.org/10.1163/156853990x00428 .
doi: 10.1163/156853990x00428
Berridge, K.C. and Fentress, J.C. (1987a). Deafferentation does not disrupt natural rules of action syntax. Behav. Brain Res. 23: 69–76, https://doi.org/10.1016/0166-4328(87)90243-9 .
doi: 10.1016/0166-4328(87)90243-9
Berridge, K.C., Fentress, J.C., and Parr, H. (1987). Natural syntax rules control action sequence of rats. Behav. Brain Res. 23: 59–68, https://doi.org/10.1016/0166-4328(87)90242-7 .
doi: 10.1016/0166-4328(87)90242-7
Berridge, K.C. and Fentress, J.C. (1987b). Disruption of natural grooming chains after striatopallidal lesions. Psychobiology 15: 336–342, https://doi.org/10.3758/bf03327290 .
doi: 10.3758/bf03327290
Berridge, K.C. and Whishaw, I.Q. (1992). Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res. 90: 275–290, https://doi.org/10.1007/bf00227239 .
doi: 10.1007/bf00227239
Berridge, K.C. and Aldridge, J.W. (2000). Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse 37: 194–204, https://doi.org/10.1002/1098-2396(20000901)37:3<194::aid-syn3>3.0.co;2-a .
Berridge, K.C., Aldridge, J.W., Houchard, K.R., and Zhuang, X. (2005). Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive-compulsive disorder and Tourette’s. BMC Biol. 3: 4, https://doi.org/10.1186/1741-7007-3-4 .
doi: 10.1186/1741-7007-3-4
Bertram, R., Daou, A., Hyson, R.L., Johnson, F., and Wu, W. (2014). Two neural streams, one voice: pathways for theme and variation in the songbird brain. Neuroscience 277: 806–817, https://doi.org/10.1016/j.neuroscience.2014.07.061 .
doi: 10.1016/j.neuroscience.2014.07.061
Blomeley, C. and Bracci, E. (2008). Substance P depolarizes striatal projection neurons and facilitates their glutamatergic inputs. J. Physiol. 586: 2143–2155, https://doi.org/10.1113/jphysiol.2007.148965 .
doi: 10.1113/jphysiol.2007.148965
Blomeley, C.P., Kehoe, L.A., and Bracci, E. (2009). Substance P mediates excitatory interactions between striatal projection neurons. J. Neurosci. 29: 4953–4963, https://doi.org/10.1523/jneurosci.6020-08.2009 .
doi: 10.1523/jneurosci.6020-08.2009
Bolam, J.P., Hanley, J.J., Booth, P.A.C., and Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196: 527–542, https://doi.org/10.1046/j.1469-7580.2000.19640527.x .
doi: 10.1046/j.1469-7580.2000.19640527.x
Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., and Wainer, B.H. (1986). Substance P-Containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 397: 279–289, https://doi.org/10.1016/0006-8993(86)90629-3 .
doi: 10.1016/0006-8993(86)90629-3
Bolam, J.P. and Izzo, P.N. (1988). The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Exp. Brain Res. 70: 361–377, https://doi.org/10.1007/bf00248361 .
doi: 10.1007/bf00248361
Bottjer, S.W., Halsema, K.A., Brown, S.A., and Miesner, E.A. (1989). Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol. 279: 312–326, https://doi.org/10.1002/cne.902790211 .
doi: 10.1002/cne.902790211
Boyd, L.A., Edwards, J.D., Siengsukon, C.S., Vidoni, E.D., Wessel, B.D., and Linsdell, M.A. (2009). Motor sequence chunking is impaired by basal ganglia stroke. Neurobiol. Learn. Mem. 92: 35–44, https://doi.org/10.1016/j.nlm.2009.02.009 .
doi: 10.1016/j.nlm.2009.02.009
Brainard, M.S. and Doupe, A.J. (2000). Auditory feedback in learning and maintenance of vocal behaviour. Nat. Rev. Neurosci. 1: 31–40, https://doi.org/10.1038/35036205 .
doi: 10.1038/35036205
Brainard, M.S. and Doupe, A.J. (2013). Translating birdsong: songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36: 489–517, https://doi.org/10.1146/annurev-neuro-060909-152826 .
doi: 10.1146/annurev-neuro-060909-152826
Brimblecombe, K.R. and Cragg, S.J. (2015). Substance P weights striatal dopamine transmission differently within the striosome-matrix axis. J. Neurosci. 35: 9017–9023, https://doi.org/10.1523/jneurosci.0870-15.2015 .
doi: 10.1523/jneurosci.0870-15.2015
Bucher, D., Haspel, G., Golowasch, J., and Nadim, F. (2015). Central pattern generators. In: eLS. Wiley, Chichester, UK, pp. 1–12.
Buxton, D., Bracci, E., Overton, P.G., and Gurney, K. (2017). Striatal neuropeptides enhance selection and rejection of sequential actions. Front. Comput. Neurosci . 11: 62. https://doi.org/10.3389/fncom.2017.00062 .
doi: 10.3389/fncom.2017.00062
Cacciatore, T.W., Rozenshteyn, R., and Kristan, W.B.Jr. (2000). Kinematics and modeling of leech crawling: evidence for an oscillatory behavior produced by propagating waves of excitation. J. Neurosci. 20: 1643–1655, https://doi.org/10.1523/jneurosci.20-04-01643.2000 .
doi: 10.1523/jneurosci.20-04-01643.2000
Calabresi, P., Maj, R., Pisani, A., Mercuri, N., and Bernardi, G. (1992). Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12: 4224–4233, https://doi.org/10.1523/jneurosci.12-11-04224.1992 .
doi: 10.1523/jneurosci.12-11-04224.1992
Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17: 1022–1030, https://doi.org/10.1038/nn.3743 .
doi: 10.1038/nn.3743
Carrillo-Reid, L., Tecuapetla, F., Tapia, D., Hernández-Cruz, A., Galarraga, E., Drucker-Colin, R., and Bargas, J. (2008). Encoding network states by striatal cell assemblies. J. Neurophysiol. 99: 1435–1450, https://doi.org/10.1152/jn.01131.2007 .
doi: 10.1152/jn.01131.2007
Casarrubea, M., Di Giovanni, G., Crescimanno, G., Rosa, I., Aiello, S., Di Censo, D., Ranieri, B., Santangelo, A., Busatta, D., Cassioli, E., et al.. (2019). Effects of substantia nigra pars compacta lesion on the behavioral sequencing in the 6-OHDA model of Parkinson’s disease. Behav. Brain Res. 362: 28–35, https://doi.org/10.1016/j.bbr.2019.01.004 .
doi: 10.1016/j.bbr.2019.01.004
Chen, J.R., Stepanek, L., and Doupe, A.J. (2014). Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure. J. Neurophysiol. 111: 248–257, https://doi.org/10.1152/jn.00584.2012 .
doi: 10.1152/jn.00584.2012
Chen, Liang-Wei, Wei, L.-C., Liu, H.-L., Qiu, Y., and Chan, Y.-S. (2001). Cholinergic neurons expressing substance P receptor (NK1) in the basal forebrain of the rat: a double immunocytochemical study. Brain Res. 904: 161–166, https://doi.org/10.1016/s0006-8993(01)02460-x .
doi: 10.1016/s0006-8993(01)02460-x
Chen, L.-W., Cao, R., Liu, H.-L., Ju, G., and Chan, Y.S. (2003). The striatal GABAergic neurons expressing substance P receptors in the basal ganglia of mice. Neuroscience 119: 919–925, https://doi.org/10.1016/s0306-4522(03)00223-9 .
doi: 10.1016/s0306-4522(03)00223-9
Chevaleyre, V. and Castillo, P.E. (2003). Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38: 461–472, https://doi.org/10.1016/s0896-6273(03)00235-6 .
doi: 10.1016/s0896-6273(03)00235-6
Collins, A.L., Greenfield, V.Y., Bye, J.K., Linker, K.E., Wang, A.S., and Wassum, K.M. (2016). Dynamic mesolimbic dopamine signalling during action sequence learning and expectation violation. Sci. Rep. 6: 20231, https://doi.org/10.1038/srep20231 .
doi: 10.1038/srep20231
Crittenden, J.R. and Graybiel, A.M. (2011). Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5: 59, https://doi.org/10.3389/fnana.2011.00059 .
doi: 10.3389/fnana.2011.00059
Cromwell, H.C. and Berridge, K.C. (1996). Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci. 16: 3444–3458, https://doi.org/10.1523/jneurosci.16-10-03444.1996 .
doi: 10.1523/jneurosci.16-10-03444.1996
Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494: 238–242, https://doi.org/10.1038/nature11846 .
doi: 10.1038/nature11846
Czubayko, U. and Plenz, D. (2002). Fast synaptic transmission between striatal spiny projection neurons. Proc. Natl. Acad. Sci. 99, 15764–15769, https://doi.org/10.1073/pnas.242428599 .
doi: 10.1073/pnas.242428599
Dang, M.T., Yokoi, F., Yin, H.H., Lovinger, D.M., Wang, Y., and Li, Y. (2006). Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl. Acad. Sci. 103, 15254–15259, https://doi.org/10.1073/pnas.0601758103 .
doi: 10.1073/pnas.0601758103
Dautan, D., Hacioğlu Bay, H., Bolam, J.P., Gerdjikov, T.V., and Mena-Segovia, J. (2016). Extrinsic sources of cholinergic innervation of the striatal complex: a whole-brain mapping analysis. Front. Neuroanat. 10: 1, https://doi.org/10.3389/fnana.2016.00001 .
doi: 10.3389/fnana.2016.00001
DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13: 281–285, https://doi.org/10.1016/0166-2236(90)90110-v .
doi: 10.1016/0166-2236(90)90110-v
Dezfouli, A. and Balleine, B.W. (2012). Habits, action sequences and reinforcement learning. Eur. J. Neurosci. 35: 1036–1051, https://doi.org/10.1111/j.1460-9568.2012.08050.x .
doi: 10.1111/j.1460-9568.2012.08050.x
Dezfouli, A., Lingawi, N.W., and Balleine, B.W. (2014). Habits as action sequences: hierarchical action control and changes in outcome value. Philos. Trans. R. Soc. B: Biol. Sci. 369: 20130482, https://doi.org/10.1098/rstb.2013.0482 .
doi: 10.1098/rstb.2013.0482
Dhawale, A.K., Wolff, S.B.E., Ko, R., and Ölveczky, B.P. (2021). The basal ganglia control the detailed kinematics of learned motor skills. Nat. Neurosci. 24: 1256–1269, https://doi.org/10.1038/s41593-021-00889-3 .
doi: 10.1038/s41593-021-00889-3
Díaz-Hernández, E., Contreras-López, R., Sánchez-Fuentes, A., Rodríguez-Sibrían, L., Ramírez-Jarquín, J.O., and Tecuapetla, F. (2018). The thalamostriatal projections contribute to the initiation and execution of a sequence of movements. Neuron 100: 739.e5–752.e5, https://doi.org/10.1016/j.neuron.2018.09.052 .
doi: 10.1016/j.neuron.2018.09.052
Doig, N.M., Moss, J., and Bolam, J.P. (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci. 30: 14610–14618, https://doi.org/10.1523/jneurosci.1623-10.2010 .
doi: 10.1523/jneurosci.1623-10.2010
Dong, J., Hawes, S., Wu, J., Le, W., and Cai, H. (2021). Connectivity and functionality of the globus pallidus externa under normal conditions and Parkinson’s disease. Front. Neural Circ. 15: 645287, https://doi.org/10.3389/fncir.2021.645287 .
doi: 10.3389/fncir.2021.645287
Drummond, H. (1981). The nature and description of behavior patterns. In: Bateson, P.P.G., and Klopfer, P.H. (Eds.), Perspectives in ethology. Advantages of diversity . Plenum Press, New York, pp. 1–33.
Duffy, R.A., Varty, G.B., Morgan, C.A., and Lachowicz, J.E. (2002). Correlation of neurokinin (NK) 1 receptor occupancy in gerbil striatum with behavioral effects of NK1 antagonists. J. Pharmacol. Exp. Ther. 301: 536–542, https://doi.org/10.1124/jpet.301.2.536 .
doi: 10.1124/jpet.301.2.536
Favila, N., Gurney, K., and Overton, P.G. (2021). Blocking NK1 receptors disrupts the sequential and temporal organization of chain grooming in rats. Neuropharmacology 196: 108716, https://doi.org/10.1016/j.neuropharm.2021.108716 .
doi: 10.1016/j.neuropharm.2021.108716
Favila, N., Gurney, K., and Overton, P.G. (2023). The NK1 antagonist L-733,060 facilitates sequence learning. J. Psychopharmacol. , https://doi.org/10.1177/02698811231161582 (Epub ahead of print).
doi: 10.1177/02698811231161582
Fee, M.S. and Scharff, C. (2010). The songbird as a model for the generation and learning of complex sequential behaviors. ILAR J. 51: 362–377, https://doi.org/10.1093/ilar.51.4.362 .
doi: 10.1093/ilar.51.4.362
Fisher, S.D., Robertson, P.B., Black, M.J., Redgrave, P., Sagar, M.A., Wickliffe, C.A., and Reynolds, J.N.H. (2017). Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nat. Commun. 8: 334, https://doi.org/10.1038/s41467-017-00394-x .
doi: 10.1038/s41467-017-00394-x
Foster, N.N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J.H., et al.. (2021). The mouse cortico-basal ganglia-thalamic network. Nature 598: 188–194, https://doi.org/10.1038/s41586-021-03993-3 .
doi: 10.1038/s41586-021-03993-3
Francis, T.C., Yano, H., Demarest, T.G., Shen, H., and Bonci, A. (2019). High-frequency activation of nucleus accumbens D1-MSNs drives excitatory potentiation on D2-MSNs. Neuron 103: 432.e3–444.e3, https://doi.org/10.1016/j.neuron.2019.05.031 .
doi: 10.1016/j.neuron.2019.05.031
Freund, T.F., Powell, J.F., and Smith, A.D. (1984). Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215, https://doi.org/10.1016/0306-4522(84)90294-x .
doi: 10.1016/0306-4522(84)90294-x
Frigon, A. and Gossard, J.P. (2010). Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord. J. Neurosci. 30: 7061–7071, https://doi.org/10.1523/jneurosci.0450-10.2010 .
doi: 10.1523/jneurosci.0450-10.2010
Fu, W.-T. and Anderson, J.R. (2008). Solving the credit assignment problem: explicit and implicit learning of action sequences with probabilistic outcomes. Psychol. Res. 72: 321–330, https://doi.org/10.1007/s00426-007-0113-7 .
doi: 10.1007/s00426-007-0113-7
Fujii, N. and Graybiel, A.M. (2003). Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301: 1246–1249, https://doi.org/10.1126/science.1086872 .
doi: 10.1126/science.1086872
Gardner, T.J., Naef, F., and Nottebohm, F. (2005). Freedom and rules: the acquisition and reprogramming of a bird’s learned song. Science 308: 1046–1049, https://doi.org/10.1126/science.1108214 .
doi: 10.1126/science.1108214
Gauchy, C., Desban, M., Glowinski, J., and Kemel, M.L. (1996). Distinct regulations by septide and the neurokinin-1 tachykinin receptor agonist [pro9] substance P of the N-methyl-d-aspartate-evoked release of dopamine in striosome- and matrix-enriched areas of the rat striatum. Neuroscience 73: 929–939, https://doi.org/10.1016/0306-4522(96)00099-1 .
doi: 10.1016/0306-4522(96)00099-1
Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic editing reveals the hierarchical organization of learned action sequences. Cell 174: 32–43, https://doi.org/10.1016/j.cell.2018.06.012 .
doi: 10.1016/j.cell.2018.06.012
Georgiou, N., Bradshaw, J.L., Iansek, R., Phillips, J.G., Mattingley, J.B., and Bradshaw, J.A. (1994). Reduction in external cues and movement sequencing in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr. 57: 368–370, https://doi.org/10.1136/jnnp.57.3.368 .
doi: 10.1136/jnnp.57.3.368
Gerfen, C., Engber, T., Mahan, L., Susel, Z., Chase, T., Monsma, F., and Sibley, D. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429–1432, https://doi.org/10.1126/science.2147780 .
doi: 10.1126/science.2147780
Gil, D. and Slater, P.J.B. (2000). Song organisation and singing patterns of the willow warbler Phylloscopus trochilus. Behaviour 137: 759–782, https://doi.org/10.1163/156853900502330 .
doi: 10.1163/156853900502330
Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J., and Kreitzer, A.C. (2010). Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci. 30: 2223–2234, https://doi.org/10.1523/jneurosci.4870-09.2010 .
doi: 10.1523/jneurosci.4870-09.2010
Gobet, F., Lane, P.C., Croker, S., Cheng, P.C., Jones, G., Oliver, I., and Pine, J.M. (2001). Chunking mechanisms in human learning. Trends Cognit. Sci. 5: 236–243, https://doi.org/10.1016/s1364-6613(00)01662-4 .
doi: 10.1016/s1364-6613(00)01662-4
Gonzalez-Nicolini, V. and McGinty, J.F. (2002). NK-1 receptor blockade decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Brain Res. 931: 41–49, https://doi.org/10.1016/s0006-8993(02)02250-3 .
doi: 10.1016/s0006-8993(02)02250-3
Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70: 119–136, https://doi.org/10.1006/nlme.1998.3843 .
doi: 10.1006/nlme.1998.3843
Graybiel, A.M. (2000). The basal ganglia. Curr. Biol. 10: R509–R511, https://doi.org/10.1016/s0960-9822(00)00593-5 .
doi: 10.1016/s0960-9822(00)00593-5
Graybiel, A.M. and Grafton, S.T. (2015). The striatum: where skills and habits meet. Cold Spring Harbor Perspect. Biol. 7: a021691, https://doi.org/10.1101/cshperspect.a021691 .
doi: 10.1101/cshperspect.a021691
Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4: 573–586, https://doi.org/10.1038/nrn1137 .
doi: 10.1038/nrn1137
Grillner, S. (2006). Biological Pattern Generation: the cellular and computational logic of networks in motion. Neuron 52: 751–766, https://doi.org/10.1016/j.neuron.2006.11.008 .
doi: 10.1016/j.neuron.2006.11.008
Grillner, S., Hellgren, J., Menard, A., Saitoh, K., and Wikstrom, M. (2005). Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci. 28: 364–370, https://doi.org/10.1016/j.tins.2005.05.004 .
doi: 10.1016/j.tins.2005.05.004
Grillner, S. and Wallén, P. (2002). Cellular bases of a vertebrate locomotor system–steering, intersegmental and segmental co-ordination and sensory control. Brain Res. Rev. 40: 92–106, https://doi.org/10.1016/s0165-0173(02)00193-5 .
doi: 10.1016/s0165-0173(02)00193-5
Grillner, S. and Wallén, P. (2004). Innate versus learned movements—a false dichotomy? Prog. Brain Res. 143: 3–12, https://doi.org/10.1016/s0079-6123(03)43001-x .
doi: 10.1016/s0079-6123(03)43001-x
Guo, Q., Wang, D., He, X., Feng, Q., Lin, R., Xu, F., Fu, L., and Luo, M. (2015). Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 10: e0123381, https://doi.org/10.1371/journal.pone.0123381 .
doi: 10.1371/journal.pone.0123381
Guzman, J.N., Hernandez, A., Galarraga, E., Tapia, D., Laville, A., Vergara, R., Aceves, J., and Bargas, J. (2003). Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J. Neurosci. 23: 8931–8940, https://doi.org/10.1523/jneurosci.23-26-08931.2003 .
doi: 10.1523/jneurosci.23-26-08931.2003
Gygi, S.P., Gibb, J.W., Johnson, M., and Hanson, G.R. (1993). Blockade of tachykinin NK1 receptors by CP-96345 enhances dopamine release and the striatal dopamine effects of methamphetamine in rats. Eur. J. Pharmacol. 250: 177–180, https://doi.org/10.1016/0014-2999(93)90639-y .
doi: 10.1016/0014-2999(93)90639-y
Hahnloser, R.H.R., Kozhevnikov, A.A., and Fee, M.S. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419: 65–70, https://doi.org/10.1038/nature00974 .
doi: 10.1038/nature00974
Hall, M.E., Grantham, P., Limoli, J., and Stewart, J.M. (1987). Effects of substance P and neurokinin A (substance K) on motor behavior: unique effect of substance P attributable to its amino-terminal sequence. Brain Res. 420: 82–94, https://doi.org/10.1016/0006-8993(87)90242-3 .
doi: 10.1016/0006-8993(87)90242-3
Harrington, D.L. and Haaland, K.Y. (1991). Sequencing in Parkinson’s disease. Abnormalities in programming and controlling movement. Brain 1: 99–115.
Hökfelt, T., Broberger, C., Xu, Z.Q., Sergeyev, V., Ubink, R., and Diez, M. (2000). Neuropeptides–an overview. Neuropharmacology 39: 1337–1356, https://doi.org/10.1016/s0028-3908(00)00010-1 .
doi: 10.1016/s0028-3908(00)00010-1
Hooks, B.M., Papale, A.E., Paletzki, R.F., Feroze, M.W., Eastwood, B.S., Couey, J.J., Winnubst, J., Chandrashekar, J., and Gerfen, C.R. (2018). Topographic precision in sensory and motor corticostriatal projections varies across cell type and cortical area. Nat. Commun. 3: 3549, https://doi.org/10.1038/s41467-018-05780-7 .
doi: 10.1038/s41467-018-05780-7
Horner, K.A., Hebbard, J.C., Logan, A.S., Vanchipurakel, G.A., and Gilbert, Y.E. (2012). Activation of mu opioid receptors in the striatum differentially augments methamphetamine-induced gene expression and enhances stereotypic behavior. J. Neurochem. 120: 779–794, https://doi.org/10.1111/j.1471-4159.2011.07620.x .
doi: 10.1111/j.1471-4159.2011.07620.x
Hughes, G. and Wiersma, C. (1960). The co-ordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). J. Exp. Biol. 37: 657–670, https://doi.org/10.1242/jeb.37.4.657 .
doi: 10.1242/jeb.37.4.657
Hughes, M., Hultsch, H., and Todt, D. (2002). Imitation and invention in song learning in nightingales (Luscinia megarhynchos B., Turdidae). Ethology 108: 97–113, https://doi.org/10.1046/j.1439-0310.2002.00720.x .
doi: 10.1046/j.1439-0310.2002.00720.x
Hultsch, H. (1992). Time window and unit capacity: dual constraints on the acquisition of serial information in songbirds. J. Comp. Physiol. A 170: 275–280, https://doi.org/10.1007/bf00191415 .
doi: 10.1007/bf00191415
Hultsch, H. and Todt, D. (1989). Memorization and reproduction of songs in nightingales (Luscinia megarhynchos): evidence for package formation. J. Comp. Physiol. A 165: 197–203, https://doi.org/10.1007/bf00619194 .
doi: 10.1007/bf00619194
Huston, J.P. and Hasenöhrl, R.U. (1995). The role of neuropeptides in learning: focus on the neurokinin substance P. Behav. Brain Res. 66: 117–127, https://doi.org/10.1016/0166-4328(94)00132-y .
doi: 10.1016/0166-4328(94)00132-y
Ingham, C.A., Hood, S.H., and Arbuthnott, G.W. (1991). A light and electron microscopical study of enkephalin-immunoreactive structures in the rat neostriatum after removal of the nigrostriatal dopaminergic pathway. Neuroscience 42: 715–730, https://doi.org/10.1016/0306-4522(91)90040-u .
doi: 10.1016/0306-4522(91)90040-u
Jaeger, D., Kita, H., and Wilson, C.J. (1994). Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. Neurophysiology 72: 2555–2558, https://doi.org/10.1152/jn.1994.72.5.2555 .
doi: 10.1152/jn.1994.72.5.2555
Jakab, R. and Goldman-Rakic, P. (1996). Presynaptic and postsynaptic subcellular localization of substance P receptor immunoreactivity in the neostriatum of the rat and rhesus monkey (Macaca Mulatta). J. Comp. Neurol. 369: 125–136, https://doi.org/10.1002/(sici)1096-9861(19960520)369:1<125::aid-cne9>3.0.co;2-5 .
Janacsek, K., Shattuck, K.F., Tagarelli, K.M., Lum, J.A.G., Turkeltaub, P.E., and Ullman, M.T. (2020). Sequence learning in the human brain: a functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage 207: 116387, https://doi.org/10.1016/j.neuroimage.2019.116387 .
doi: 10.1016/j.neuroimage.2019.116387
Jarvis, E.D., Scharff, C., Grossman, M.R., Ramos, J.A., and Nottebohm, F. (1998). For whom the bird sings. Neuron 21: 775–788, https://doi.org/10.1016/s0896-6273(00)80594-2 .
doi: 10.1016/s0896-6273(00)80594-2
Jin, X. and Costa, R.M. (2010). Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466: 457–462, https://doi.org/10.1038/nature09263 .
doi: 10.1038/nature09263
Jin, X. and Costa, R.M. (2015). Shaping action sequences in basal ganglia circuits. Curr. Opin. Neurobiol. 33: 188–196, https://doi.org/10.1016/j.conb.2015.06.011 .
doi: 10.1016/j.conb.2015.06.011
Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17: 423–430, https://doi.org/10.1038/nn.3632 .
doi: 10.1038/nn.3632
Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., and Graybiel, A.M. (1999). Building neural representations of habits. Science 286: 1745–1749, https://doi.org/10.1126/science.286.5445.1745 .
doi: 10.1126/science.286.5445.1745
Kalueff, A.V., Aldridge, J.W., LaPorte, J.L., Murphy, D.L., and Tuohimaa, P. (2007). Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc. 2: 2538–2544, https://doi.org/10.1038/nprot.2007.367 .
doi: 10.1038/nprot.2007.367
Kao, M.H., Doupe, A.J., and Brainard, M.S. (2005). Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song. Nature 433: 638–643, https://doi.org/10.1038/nature03127 .
doi: 10.1038/nature03127
Katz, R.J. and Gelbart, J. (1978). Endogenous opiates and behavioral responses to environmental novelty. Behav. Biol. 24: 338–348, https://doi.org/10.1016/s0091-6773(79)90197-4 .
doi: 10.1016/s0091-6773(79)90197-4
Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A.L., Dhawale, A.K., Kampff, A.R., and Ölveczky, B.P. (2015). Motor cortex is required for learning but not for executing a motor skill. Neuron 86: 800–812, https://doi.org/10.1016/j.neuron.2015.03.024 .
doi: 10.1016/j.neuron.2015.03.024
Kerner, J.A., Standaert, D.G., Penney, J.B.Jr, Young, A.B., and Landwehrmeyer, G.B. (1997). Expression of group one metabotropic glutamate receptor subunit mRNAs in neurochemically identified neurons in the rat neostriatum, neocortex, and hippocampus. Mol. Brain Res. 48: 259–269, https://doi.org/10.1016/s0169-328x(97)00102-2 .
doi: 10.1016/s0169-328x(97)00102-2
Kertes, E., László, K., Berta, B., and Lénárd, L. (2010). Positive reinforcing effects of substance P in the rat globus pallidus revealed by conditioned place preference. Behav. Brain Res. 215: 152–155, https://doi.org/10.1016/j.bbr.2010.06.027 .
doi: 10.1016/j.bbr.2010.06.027
Kraft, M., Noailles, P., and Angulo, J.A. (2001). Substance P modulates cocaine-evoked dopamine overflow in the striatum of the rat brain. Ann. N. Y. Acad. Sci. 937: 121–131, https://doi.org/10.1111/j.1749-6632.2001.tb03561.x .
doi: 10.1111/j.1749-6632.2001.tb03561.x
Krolewski, D.M., Bishop, C., and Walker, P.D. (2005). Intrastriatal dopamine D1 receptor agonist-mediated motor behavior is reduced by local neurokinin 1 receptor antagonism. Synapse 57: 1–7, https://doi.org/10.1002/syn.20148 .
doi: 10.1002/syn.20148
Levesque, M., Bedard, M.A., Courtemanche, R., Tremblay, P.L., Scherzer, P., and Blanchet, P.J. (2007). Raclopride-induced motor consolidation impairment in primates: role of the dopamine type-2 receptor in movement chunking into integrated sequences. Exp. Brain Res. 182: 499–508, https://doi.org/10.1007/s00221-007-1010-4 .
doi: 10.1007/s00221-007-1010-4
Lipton, D.M., Gonzales, B.J., and Citri, A. (2019). Dorsal striatal circuits for habits, compulsions and additions. Front. Syst. Neurosci. 13: 28, https://doi.org/10.3389/fnsys.2019.00028 .
doi: 10.3389/fnsys.2019.00028
Liu, W.-C. and Nottebohm, F. (2007). A learning program that ensures prompt and versatile vocal imitation. Proc. Natl. Acad. Sci. 104, 20398–20403, https://doi.org/10.1073/pnas.0710067104 .
doi: 10.1073/pnas.0710067104
Long, M.A. and Fee, M.S. (2008). Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456: 189–194, https://doi.org/10.1038/nature07448 .
doi: 10.1038/nature07448
Long, M.A., Jin, D.Z., and Fee, M.S. (2010). Support for a synaptic chain model of neuronal sequence generation. Nature 468: 394–399, https://doi.org/10.1038/nature09514 .
doi: 10.1038/nature09514
Mallet, N., Le Moine, C., Charpier, S., and Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci. 25: 3857–3869, https://doi.org/10.1523/jneurosci.5027-04.2005 .
doi: 10.1523/jneurosci.5027-04.2005
Mallet, N., Micklem, B.R., Henny, P., Brown, M.T., Williams, C., Bolam, J.P., Nakamura, K.C., and Magill, P.J. (2012). Dichotomous organization of the external globus pallidus. Neuron 74: 1075–1086, https://doi.org/10.1016/j.neuron.2012.04.027 .
doi: 10.1016/j.neuron.2012.04.027
Mallet, N., Schmidt, R., Leventhal, D., Chen, F., Amer, N., Boraud, T., and Berke, J.D. (2016). Arkypallidal cells send a stop signal to striatum. Neuron 89: 308–316, https://doi.org/10.1016/j.neuron.2015.12.017 .
doi: 10.1016/j.neuron.2015.12.017
Mandelbaum, G., Taranda, J., Haynes, T.M., Hochbaum, D.R., Huang, K.W., Hyun, M., Venkataraju, K.U., Straub, C., Wang, W., Robertson, K., et al.. (2019). Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron 102: 636–652.e7, https://doi.org/10.1016/j.neuron.2019.02.035 .
doi: 10.1016/j.neuron.2019.02.035
Marder, E. (2000). Motor pattern generation. Curr. Opin. Neurobiol. 10: 691–698, https://doi.org/10.1016/s0959-4388(00)00157-4 .
doi: 10.1016/s0959-4388(00)00157-4
Marder, Eve and Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Curr. Biol. 11: R986–R996, https://doi.org/10.1016/s0960-9822(01)00581-4 .
doi: 10.1016/s0960-9822(01)00581-4
Markowitz, J.E., Ivie, E., Kligler, L., and Gardner, T.J. (2013). Long-range order in canary song. PLoS Comput. Biol. 9: e1003052, https://doi.org/10.1371/journal.pcbi.1003052 .
doi: 10.1371/journal.pcbi.1003052
Martiros, N., Burgess, A.A., and Graybiel, A.M. (2018). Inversely active striatal projection neurons and interneurons selectively delimit useful behavioral sequences. Curr. Biol. 28: 560–573.e5, https://doi.org/10.1016/j.cub.2018.01.031 .
doi: 10.1016/j.cub.2018.01.031
Matheson, A.M.M. and Sakata, J.T. (2015). Relationship between the sequencing and timing of vocal motor elements in birdsong. PLoS One 10: e0143203, https://doi.org/10.1371/journal.pone.0143203 .
doi: 10.1371/journal.pone.0143203
Matsuda, W., Furuta, T., Nakamura, K.C., Hioki, H., Fujiyama, F., Arai, R., and Kaneko, T. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29: 444–453, https://doi.org/10.1523/jneurosci.4029-08.2009 .
doi: 10.1523/jneurosci.4029-08.2009
McElvain, L.E., Chen, Y., Moore, J.D., Brigidi, G.S., Bloodgood, B.L., Lim, B.K., Costa, R.M., and Kleinfeld, D. (2021). Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 109: 1721–1738, https://doi.org/10.1016/j.neuron.2021.03.017 .
doi: 10.1016/j.neuron.2021.03.017
McHaffie, J., Stanford, T., Stein, B., Coizet, V., and Redgrave, P. (2005). Subcortical loops through the basal ganglia. Trends Neurosci. 28: 401–407, https://doi.org/10.1016/j.tins.2005.06.006 .
doi: 10.1016/j.tins.2005.06.006
Meyer-Luehmann, M., Thompson, J.F., Berridge, K.C., and Aldridge, J.W. (2002). Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. Eur. J. Neurosci. 16: 1599–1608, https://doi.org/10.1046/j.1460-9568.2002.02210.x .
doi: 10.1046/j.1460-9568.2002.02210.x
Miller, G.A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63: 81–97, https://doi.org/10.1037/h0043158 .
doi: 10.1037/h0043158
Miller, R.J. and Cuatrecasas, P. (1978). The enkephalins. Naturwissenschaften 65: 507–514, https://doi.org/10.1007/bf00439790 .
doi: 10.1007/bf00439790
Mooney, R. (2009). Neurobiology of song learning. Curr. Opin. Neurobiol. 19: 654–660, https://doi.org/10.1016/j.conb.2009.10.004 .
doi: 10.1016/j.conb.2009.10.004
Murray, J.M. and Escola, G.S. (2017). Learning multiple variable-speed sequences in striatum via cortical tutoring. eLife 6: e26084, https://doi.org/10.7554/elife.26084 .
doi: 10.7554/elife.26084
Nakamura, T., Nagata, M., Yagi, T., Graybiel, A.M., Yamamori, T., and Kitsukawa, T. (2017). Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. Eur. J. Neurosci. 45: 901–911, https://doi.org/10.1111/ejn.13537 .
doi: 10.1111/ejn.13537
Nottebohm, F. (2005). The neural basis of birdsong. PLoS Biol. 3: e164, https://doi.org/10.1371/journal.pbio.0030164 .
doi: 10.1371/journal.pbio.0030164
Nottebohm, F., Stokes, T.M., and Leonard, C.M. (1976). Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165: 457–486, https://doi.org/10.1002/cne.901650405 .
doi: 10.1002/cne.901650405
O’Hare, J.K., Li, H., Kim, N., Gaidis, E., Ade, K., Beck, J., Yin, H., and Calakos, N. (2017). Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. eLife 6: e26231, https://doi.org/10.7554/eLife.26231 .
doi: 10.7554/eLife.26231
Ölveczky, B.P., Andalman, A.S., and Fee, M.S. (2005). Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3: e153, https://doi.org/10.1371/journal.pbio.0030153 .
doi: 10.1371/journal.pbio.0030153
Ostlund, S.B., Winterbauer, N.E., and Balleine, B.W. (2009). Evidence of action sequence chunking in goal-directed instrumental conditioning and its dependence on the dorsomedial prefrontal cortex. J. Neurosci. 29: 8280–8287, https://doi.org/10.1523/jneurosci.1176-09.2009 .
doi: 10.1523/jneurosci.1176-09.2009
Parker, D., Zhang, W., and Grillner, S. (1998). Substance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network. J. Neurosci. 18: 4800–4813, https://doi.org/10.1523/jneurosci.18-12-04800.1998 .
doi: 10.1523/jneurosci.18-12-04800.1998
Pearson, K.G. and Wolf, H. (1987). Comparison of motor patterns in the intact and deafferented flight system of the locust. J. Comp. Physiol. 160: 269–279, https://doi.org/10.1007/bf00609732 .
doi: 10.1007/bf00609732
Pelosi, A., Girault, J.-A., and Hervé, D. (2015). Unilateral lesion of dopamine neurons induces grooming asymmetry in the mouse. PLoS One 10: e0137185, https://doi.org/10.1371/journal.pone.0137185 .
doi: 10.1371/journal.pone.0137185
Penhune, V.B. and Steele, C.J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226: 579–591, https://doi.org/10.1016/j.bbr.2011.09.044 .
doi: 10.1016/j.bbr.2011.09.044
Porter, A.J., Pillidge, K., Tsai, Y.C., Dudley, J.A., Hunt, S.P., Peirson, S.N., Brown, L.A., and Stanford, S.C. (2015). A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R−/− mice1. Gene Brain Behav. 14: 189–199, https://doi.org/10.1111/gbb.12195 .
doi: 10.1111/gbb.12195
Ramakrishnan, S., Arnett, B., and Murphy, A.D. (2014). Contextual modulation of a multifunctional central pattern generator. J. Exp. Biol. 217: 3935–3944, https://doi.org/10.1242/jeb.086751 .
doi: 10.1242/jeb.086751
Redgrave, P., Prescott, T.J., and Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89: 1009–1023, https://doi.org/10.1016/s0306-4522(98)00319-4 .
doi: 10.1016/s0306-4522(98)00319-4
Rekling, J.C. and Feldman, J.L. (1998). Prebötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60: 385–405, https://doi.org/10.1146/annurev.physiol.60.1.385 .
doi: 10.1146/annurev.physiol.60.1.385
Reynolds, J.N.J. and Wickens, J.R. (2002). Dopamine-dependent plasticity of corticostriatal synapses. Neural Network. 15: 507–521, https://doi.org/10.1016/s0893-6080(02)00045-x .
doi: 10.1016/s0893-6080(02)00045-x
Ribeiro-da-Silva, A. and Hökfelt, T. (2000). Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides 34: 256–271, https://doi.org/10.1054/npep.2000.0834 .
doi: 10.1054/npep.2000.0834
Rothwell, P.E., Hayton, S.J., Sun, G.L., Fuccillo, M.V., Lim, B.K., and Malenka, R.C. (2015). Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88: 345–356, https://doi.org/10.1016/j.neuron.2015.09.035 .
doi: 10.1016/j.neuron.2015.09.035
Roseberry, T.K., Lee, A.M., Lalive, A.L., Wilbrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164: 526–537, https://doi.org/10.1016/j.cell.2015.12.037 .
doi: 10.1016/j.cell.2015.12.037
Rupniak, N.M.J. and Kramer, M.S. (2002). Substance P and related tachykinins. In: Neuropsychopharmacology – 5th Generation of progress . American College of Neuropsychopharmacology, Philadelphia, Pennsylvania, pp. 169–177.
Sakai, K., Kitaguchi, K., and Hikosaka, O. (2003). Chunking during human visuomotor sequence learning. Exp. Brain Res. 152: 229–242, https://doi.org/10.1007/s00221-003-1548-8 .
doi: 10.1007/s00221-003-1548-8
Sakata, J.T. and Brainard, M.S. (2006). Real-time contributions of auditory feedback to avian vocal motor control. J. Neurosci. 26: 9619–9628, https://doi.org/10.1523/jneurosci.2027-06.2006 .
doi: 10.1523/jneurosci.2027-06.2006
Sakata, J.T. and Vehrencamp, S.L. (2011). Integrating perspectives on vocal performance and consistency. J. Exp. Biol. 215: 201–209, https://doi.org/10.1242/jeb.056911 .
doi: 10.1242/jeb.056911
Sakurai, A. and Katz, P.S. (2016). The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist. J. Neurophysiol. 116: 1728–1742, https://doi.org/10.1152/jn.00150.2016 .
doi: 10.1152/jn.00150.2016
Satterlie, R.A. (1985). Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 229: 402–404, https://doi.org/10.1126/science.229.4711.402 .
doi: 10.1126/science.229.4711.402
Satterlie, R.A. and Nolen, T. (2001). Why do cubomedusae have only four swim pacemakers? J. Exp. Biol. 204: 1413–1419, https://doi.org/10.1242/jeb.204.8.1413 .
doi: 10.1242/jeb.204.8.1413
Savalia, T., Shukla, A., and Bapi, R.S. (2016). A unified theoretical framework for cognitive sequencing. Front. Psychol. 7: 1821, https://doi.org/10.3389/fpsyg.2016.01821 .
doi: 10.3389/fpsyg.2016.01821
Scharff, C. and Nottebohm, F. (1991). A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11: 2896–2913, https://doi.org/10.1523/jneurosci.11-09-02896.1991 .
doi: 10.1523/jneurosci.11-09-02896.1991
Schönberger, A.R., Hagelweide, K., Pelzer, E.A., Fink, G.R., and Schubotz, R.I. (2015). Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson’s disease. Neuropsychologia 77: 409–420, https://doi.org/10.1016/j.neuropsychologia.2015.09.017 .
doi: 10.1016/j.neuropsychologia.2015.09.017
Shepherd, G.M. (2013). Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14: 278–291, https://doi.org/10.1038/nrn3469 .
doi: 10.1038/nrn3469
Shults, C.W., Quirion, R., Chronwall, B., Chase, T.N., and O’Donohue, T.L. (1984). A comparison of the anatomical distribution of substance P and substance P receptors in the rat central nervous system. Peptides 5: 1097–1128, https://doi.org/10.1016/0196-9781(84)90177-3 .
doi: 10.1016/0196-9781(84)90177-3
Silberberg, G. and Bolam, J.P. (2015). Local and afferent synaptic pathways in the striatal microcircuitry. Curr. Opin. Neurobiol. 33: 182–187, https://doi.org/10.1016/j.conb.2015.05.002 .
doi: 10.1016/j.conb.2015.05.002
Smith, K.S. and Graybiel, A.M. (2013). A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79: 361–374, https://doi.org/10.1016/j.neuron.2013.05.038 .
doi: 10.1016/j.neuron.2013.05.038
Smith, K.S. and Graybiel, A.M. (2016). Habit formation. Dialogues Clin. Neurosci. 18, 33–43. https://doi.org/10.31887/dcns.2016.18.1/ksmith .
doi: 10.31887/dcns.2016.18.1/ksmith
Solopchuk, O., Alamia, A., Olivier, E., and Zénon, A. (2016). Chunking improves symbolic sequence processing and relies on working memory gating mechanisms. Learn. Mem. 23: 108–112, https://doi.org/10.1101/lm.041277.115 .
doi: 10.1101/lm.041277.115
Stern, E.A., Kincaid, A.E., and Wilson, C.J. (1997). Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77: 1697–1715, https://doi.org/10.1152/jn.1997.77.4.1697 .
doi: 10.1152/jn.1997.77.4.1697
Sutton, R.S. and Barto, A.G. (1998). Reinforcement learning: an introduction . The MIT Press, Cambridge.
Takahasi, M., Yamada, H., and Okanoya, K. (2010). Statistical and prosodic cues for song segmentation learning by bengalese finches (Lonchura striata var. domestica). Ethology 116: 481–489, https://doi.org/10.1111/j.1439-0310.2010.01772.x .
doi: 10.1111/j.1439-0310.2010.01772.x
Tartaglione, A.M., Armida, M., Potenza, R.L., Pezzola, A., Popoli, P., and Calamandrei, G. (2016). Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington’s disease. Behav. Brain Res. 313: 53–57, https://doi.org/10.1016/j.bbr.2016.06.058 .
doi: 10.1016/j.bbr.2016.06.058
Taylor, J.L., Rajbhandari, A.K., Berridge, K.C., and Aldridge, J.W. (2010). Dopamine receptor modulation of repetitive grooming actions in the rat: potential relevance for Tourette syndrome. Brain Res. 1322: 92–101, https://doi.org/10.1016/j.brainres.2010.01.052 .
doi: 10.1016/j.brainres.2010.01.052
Tecuapetla, F., Jin, X., Lima, S.Q., and Costa, R.M. (2016). Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166: 703–715, https://doi.org/10.1016/j.cell.2016.06.032 .
doi: 10.1016/j.cell.2016.06.032
Testa, C.M., Standaert, D.G., Young, A.B., and Penney, J.B.Jr. (1994). Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 14: 3005–3018, https://doi.org/10.1523/jneurosci.14-05-03005.1994 .
doi: 10.1523/jneurosci.14-05-03005.1994
Thompson, J.A. and Johnson, F. (2007). HVC microlesions do not destabilize the vocal patterns of adult male zebra finches with prior ablation of LMAN. Dev. Neurobiol. 67: 205–218, https://doi.org/10.1002/dneu.20287 .
doi: 10.1002/dneu.20287
Tinbergen, N. (1951). Behaviour as a reaction to external stimuli. In: The study of instinct . Oxford University Press, New York, pp. 15–56.
Tremblay, P.-L., Bedard, M.-A., Langlois, D., Blanchet, P.J., Lemay, M., and Parent, M. (2010). Movement chunking during sequence learning is a dopamine-dependent process: a study conducted in Parkinson’s disease. Exp. Brain Res. 205: 375–385, https://doi.org/10.1007/s00221-010-2372-6 .
doi: 10.1007/s00221-010-2372-6
Tremblay, L., Kemel, M.L., Desban, M., Gauchy, C., and Glowinski, J. (1992). Distinct presynaptic control of dopamine release in striosomal-and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2, and NK3 tachykinin receptors. Proc. Nat. Acad. Sci. 89: 11214–11218, https://doi.org/10.1073/pnas.89.23.11214 .
doi: 10.1073/pnas.89.23.11214
Tunstall, M.J., Oorschot, D.E., Kean, A., and Wickens, J.R. (2002). Inhibitory interactions between spiny projection neurons in the rat striatum. J. Neurophysiol. 88: 1263–1269, https://doi.org/10.1152/jn.2002.88.3.1263 .
doi: 10.1152/jn.2002.88.3.1263
Van Wimersma Greidanus, T.B. and Maigret, C. (1988). Grooming behavior induced by substance P. Eur. J. Pharmacol. 154: 217–220, https://doi.org/10.1016/0014-2999(88)90102-1 .
doi: 10.1016/0014-2999(88)90102-1
Veksler, V.D., Gluck, K.A., Myers, C.W., Harris, J., and Mielke, T. (2014). Alleviating the curse of dimensionality – a psychologically-inspired approach. Biological. Inspired Cognit. Architect. 10: 51–60, https://doi.org/10.1016/j.bica.2014.11.007 .
doi: 10.1016/j.bica.2014.11.007
Wall, N.R., De La Parra, M., Callaway, E.M., and Kreitzer, A.C. (2013). Differential Innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79: 347–360, https://doi.org/10.1016/j.neuron.2013.05.014 .
doi: 10.1016/j.neuron.2013.05.014
Wassum, K.M., Ostlund, S.B., and Maidment, N.T. (2012). Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatr. 71: 846–854, https://doi.org/10.1016/j.biopsych.2011.12.019 .
doi: 10.1016/j.biopsych.2011.12.019
Weir, R., Dudley, J., Yan, T., Grabowska, E., Peña-Oliver, Y., Ripley, T., Stephens, D.N., Stanford, S.C., and Hunt, S. (2013). The influence of test experience and NK1 receptor antagonists on the performance of NK1R-/- and wild type mice in the 5-Choice Serial Reaction-Time Task. J. Psychopharmacol. 28: 270–281, https://doi.org/10.1177/0269881113495722 .
doi: 10.1177/0269881113495722
Wickens, J. (1997). Basal ganglia: structure and computations. Netw. Comput. Neural Syst. 8: R77–R109, https://doi.org/10.1088/0954-898x_8_4_001 .
doi: 10.1088/0954-898x_8_4_001
Wickens, J.R., Begg, A.J., and Arbuthnott, G.W. (1996). Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70: 1–5, https://doi.org/10.1016/0306-4522(95)00436-m .
doi: 10.1016/0306-4522(95)00436-m
Williams, H. (2004). Birdsong and singing behavior. Ann. N.Y. Acad. Sci. 1016: 1–30, https://doi.org/10.1196/annals.1298.029 .
doi: 10.1196/annals.1298.029
Wu, T., Chan, P., and Hallett, M. (2010). Effective connectivity of neural networks in automatic movements in Parkinson’s disease. NeuroImage 49: 2581–2587, https://doi.org/10.1016/j.neuroimage.2009.10.051 .
doi: 10.1016/j.neuroimage.2009.10.051
Wymbs, N.F., Bassett, D.S., Mucha, P.J., Porter, M.A., and Grafton, S.T. (2012). Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 74: 936–946, https://doi.org/10.1016/j.neuron.2012.03.038 .
doi: 10.1016/j.neuron.2012.03.038
Xiao, L., Chattree, G., Oscos, F.G., Cao, M., Wanat, M.J., and Roberts, T.F. (2018). A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98: 208.e5–221.e5, https://doi.org/10.1016/j.neuron.2018.02.020 .
doi: 10.1016/j.neuron.2018.02.020
Yan, T.C., Dudley, J.A., Weir, R.K., Grabowska, E.M., Peña-Oliver, Y., Ripley, T.L., Hunt, S.P., Stephens, D.N., and Stanford, S.C. (2011). Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: Effects of d-amphetamine, stress and time of day. PLoS ONE 6: e17586, https://doi.org/10.1371/journal.pone.0017586 .
doi: 10.1371/journal.pone.0017586
Yan, T., McQuillin, A., Thapar, A., Asherson, P., Hunt, S., Stanford, S., and Gurling, H. (2010). NK1(TACR1) receptor gene ‘knockout’ mouse phenotype predicts genetic association with ADHD. J. Psychopharmacol. 24: 27–38, https://doi.org/10.1177/0269881108100255 .
doi: 10.1177/0269881108100255
Yin, H.H. (2010). The sensorimotor striatum is necessary for serial order learning. J. Neurosci. 30: 14719–14723, https://doi.org/10.1523/jneurosci.3989-10.2010 .
doi: 10.1523/jneurosci.3989-10.2010
Yin, H.H. and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7: 464–476, https://doi.org/10.1038/nrn1919 .
doi: 10.1038/nrn1919
Yin, H.H., Mulcare, S.P., Hilário, M.R.F., Clouse, E., Holloway, T., Davis, M.I., Hansson, A.C., Lovinger, D.M., and Costa, R.M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12: 333–341, https://doi.org/10.1038/nn.2261 .
doi: 10.1038/nn.2261
Yuste, R., MacLean, J.N., Smith, J., and Lansner, A. (2005). The cortex as a central pattern generator. Nat. Rev. Neurosci. 6: 477–483, https://doi.org/10.1038/nrn1686 .
doi: 10.1038/nrn1686