Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
electrical-mechanical properties
impedance flow cytometry
intrinsic biophysical properties
intrinsic multimodal characterization
single cell analysis
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
revised:
21
06
2023
received:
23
04
2023
medline:
9
11
2023
pubmed:
13
7
2023
entrez:
12
7
2023
Statut:
ppublish
Résumé
Reflecting various physiological states and phenotypes of single cells, intrinsic biophysical characteristics (e.g., mechanical and electrical properties) are reliable and important, label-free biomarkers for characterizing single cells. However, single-modal mechanical or electrical properties alone are not specific enough to characterize single cells accurately, and it has been long and challenging to couple the conventionally image-based mechanical characterization and impedance-based electrical characterization. In this work, the spatial-temporal characteristics of impedance sensing signal are leveraged, and an impedance-based multimodal electrical-mechanical flow cytometry framework for on-the-fly high-dimensional intrinsic measurement is proposed, that is, Young's modulus E, fluidity β, radius r, cytoplasm conductivity σ
Identifiants
pubmed: 37438542
doi: 10.1002/smll.202303416
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2303416Subventions
Organisme : NSFC
ID : 62174096
Organisme : NSFC
ID : 52105572
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
a) Y. Zheng, J. Nguyen, Y. Wei, Y. Sun, Lab Chip 2013, 13, 2464;
b) K. C. M. Lee, J. Guck, K. Goda, K. K. Tsia, Trends Biotechnol. 2021, 39, 1249.
C. Honrado, A. Salahi, S. J. Adair, J. H. Moore, T. W. Bauer, N. S. Swami, Lab Chip 2022, 22, 3708.
M. Urbanska, H. E. Munoz, J. Shaw Bagnall, O. Otto, S. R. Manalis, D. Di Carlo, J. Guck, Nat. Methods 2020, 17, 587.
N. Wang, R. Liu, N. Asmare, C. H. Chu, O. Civelekoglu, A. F. Sarioglu, Lab Chip 2021, 21, 1916.
Y. Wang, X. Wang, T. Pan, B. Li, J. Chu, Lab Chip 2021, 21, 3695.
D. C. Spencer, T. F. Paton, K. T. Mulroney, T. J. J. Inglis, J. M. Sutton, H. Morgan, Nat. Commun. 2020, 11, 5328.
a) P. Zhao, Y. Feng, J. Wu, J. Zhu, J. Yang, X. Ma, Z. Ouyang, X. Zhang, W. Zhang, W. Wang, Anal. Chem. 2023, 95, 7212;
b) F. Liang, J. Zhu, H. Chai, Y. Feng, P. Zhao, S. Liu, Y. Yang, L. Lin, L. Cao, W. Wang, Small Methods 2023, n/a, 2201492.
P. H. Wu, D. R. Aroush, A. Asnacios, W. C. Chen, M. E. Dokukin, B. L. Doss, P. Durand-Smet, A. Ekpenyong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee, N. M. Moore, A. Ott, Y. C. Poh, R. Ros, M. Sander, I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, D. Wirtz, Nat. Methods 2018, 15, 491.
N. Fertig, R. H. Blick, J. C. Behrends, Biophys. J. 2002, 82, 3056.
a) F. Sassa, G. C. Biswas, H. Suzuki, Lab Chip 2020, 20, 1358;
b) H. Chai, Y. Feng, F. Liang, W. Wang, Lab Chip 2021, 21, 2486;
c) L. Huang, F. Liang, Y. Feng, P. Zhao, W. Wang, Microsyst. Nanoeng. 2020, 6, 57;
d) L. Huang, X. Zhang, Y. Feng, F. Liang, W. Wang, Lab Chip 2022, 22, 1206;
e) T. Zhang, M. Gao, X. Chen, C. Gao, S. Feng, D. Chen, J. Wang, X. Zhao, J. Chen, Nanotechnol. Precis. Eng. 2022, 5, 045002.
D. Spencer, H. Morgan, ACS Sens. 2020, 5, 423.
D. R. Gossett, H. T. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, D. Di Carlo, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 7630.
C. Honrado, P. Bisegna, N. S. Swami, F. Caselli, Lab Chip 2021, 21, 22.
D. Yang, Y. Zhou, Y. Zhou, J. Han, Y. Ai, Biosens. Bioelectron. 2019, 133, 16.
K. Wang, Y. Liu, D. Chen, J. Wang, J. Chen, IEEE Trans. Electron. Dev. 2022, 69, 2015.
P. Li, Y. Ai, Anal. Chem. 2021, 93, 4108.
a) Y. Chen, K. Guo, L. Jiang, S. Zhu, Z. Ni, N. Xiang, Talanta 2022, 251, 123815;
b) J. Zhu, Y. Feng, H. Chai, F. Liang, Z. Cheng, W. Wang, Lab Chip 2023, 23, 2531.
a) T. Tang, X. Liu, Y. Yuan, T. Zhang, R. Kiya, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa, Y. Yalikun, Sens. Actuators, B 2022, 358, 131514;
b) Y. Feng, H. Chai, W. He, F. Liang, Z. Cheng, W. Wang, Small Methods 2022, 6, 2200325.
Q. Fang, Y. Feng, J. Zhu, L. Huang, W. Wang, Anal. Chem. 2023, 95, 6374.
M. Carminati, G. Ferrari, M. D. Vahey, J. Voldman, M. Sampietro, IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1438.
Y. Feng, L. Huang, P. Zhao, F. Liang, W. Wang, Anal. Chem. 2019, 91, 15204.
a) H. Morgan, T. Sun, D. Holmes, S. Gawad, N. G. Green, J. Phys. D Appl. Phys. 2007, 40, 61;
b) T. Sun, N. G. Green, S. Gawad, H. Morgan, IET Nanobiotechnol. 2007, 1, 69.
Y. Feng, Z. Cheng, H. Chai, W. He, L. Huang, W. Wang, Lab Chip 2022, 22, 240.
a) Z. Chen, Y. Zhu, D. Xu, M. M. Alam, L. Shui, H. Chen, Lab Chip 2020, 20, 2343;
b) K. D. Nyberg, K. H. Hu, S. H. Kleinman, D. B. Khismatullin, M. J. Butte, A. C. Rowat, Biophys. J. 2017, 113, 1574.
J. R. Lange, J. Steinwachs, T. Kolb, L. A. Lautscham, I. Harder, G. Whyte, B. Fabry, Biophys. J. 2015, 109, 26.
C. Petchakup, H. Yang, L. Gong, L. He, H. M. Tay, R. Dalan, A. J. Chung, K. H. H. Li, H. W. Hou, Small 2022, 18, 2270093.
O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Topfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, J. Guck, Nat. Methods 2015, 12, 199.
N. Haandbaek, S. C. Bürgel, F. Rudolf, F. Heer, A. Hierlemann, ACS Sens. 2016, 1, 1020.
a) Z. Zhang, T. Zheng, R. Zhu, Sens. Actuator B-Chem. 2020, 304, 127326;
b) L. Huang, P. Zhao, W. Wang, Lab Chip 2018, 18, 2359.
T. Tang, X. Liu, R. Kiya, Y. Shen, Y. Yuan, T. Zhang, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa, Y. Yalikun, Biosens. Bioelectron. 2021, 193, 113521.
H. Chai, Y. Feng, J. Zhu, X. Meng, F. Liang, J. Bai, W. Wang, ACS Sens. 2023, https://doi.org/10.1021/acssensors.3c00533.
M. H. Panhwar, F. Czerwinski, V. A. S. Dabbiru, Y. Komaragiri, B. Fregin, D. Biedenweg, P. Nestler, R. H. Pires, O. Otto, Nat. Commun. 2020, 11, 2190.
M. Liang, D. Yang, Y. Zhou, P. Li, J. Zhong, Y. Ai, Anal. Chem. 2021, 93, 4567.