Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.

electrical-mechanical properties impedance flow cytometry intrinsic biophysical properties intrinsic multimodal characterization single cell analysis

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
Nov 2023
Historique:
revised: 21 06 2023
received: 23 04 2023
medline: 9 11 2023
pubmed: 13 7 2023
entrez: 12 7 2023
Statut: ppublish

Résumé

Reflecting various physiological states and phenotypes of single cells, intrinsic biophysical characteristics (e.g., mechanical and electrical properties) are reliable and important, label-free biomarkers for characterizing single cells. However, single-modal mechanical or electrical properties alone are not specific enough to characterize single cells accurately, and it has been long and challenging to couple the conventionally image-based mechanical characterization and impedance-based electrical characterization. In this work, the spatial-temporal characteristics of impedance sensing signal are leveraged, and an impedance-based multimodal electrical-mechanical flow cytometry framework for on-the-fly high-dimensional intrinsic measurement is proposed, that is, Young's modulus E, fluidity β, radius r, cytoplasm conductivity σ

Identifiants

pubmed: 37438542
doi: 10.1002/smll.202303416
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2303416

Subventions

Organisme : NSFC
ID : 62174096
Organisme : NSFC
ID : 52105572

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

a) Y. Zheng, J. Nguyen, Y. Wei, Y. Sun, Lab Chip 2013, 13, 2464;
b) K. C. M. Lee, J. Guck, K. Goda, K. K. Tsia, Trends Biotechnol. 2021, 39, 1249.
C. Honrado, A. Salahi, S. J. Adair, J. H. Moore, T. W. Bauer, N. S. Swami, Lab Chip 2022, 22, 3708.
M. Urbanska, H. E. Munoz, J. Shaw Bagnall, O. Otto, S. R. Manalis, D. Di Carlo, J. Guck, Nat. Methods 2020, 17, 587.
N. Wang, R. Liu, N. Asmare, C. H. Chu, O. Civelekoglu, A. F. Sarioglu, Lab Chip 2021, 21, 1916.
Y. Wang, X. Wang, T. Pan, B. Li, J. Chu, Lab Chip 2021, 21, 3695.
D. C. Spencer, T. F. Paton, K. T. Mulroney, T. J. J. Inglis, J. M. Sutton, H. Morgan, Nat. Commun. 2020, 11, 5328.
a) P. Zhao, Y. Feng, J. Wu, J. Zhu, J. Yang, X. Ma, Z. Ouyang, X. Zhang, W. Zhang, W. Wang, Anal. Chem. 2023, 95, 7212;
b) F. Liang, J. Zhu, H. Chai, Y. Feng, P. Zhao, S. Liu, Y. Yang, L. Lin, L. Cao, W. Wang, Small Methods 2023, n/a, 2201492.
P. H. Wu, D. R. Aroush, A. Asnacios, W. C. Chen, M. E. Dokukin, B. L. Doss, P. Durand-Smet, A. Ekpenyong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee, N. M. Moore, A. Ott, Y. C. Poh, R. Ros, M. Sander, I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, D. Wirtz, Nat. Methods 2018, 15, 491.
N. Fertig, R. H. Blick, J. C. Behrends, Biophys. J. 2002, 82, 3056.
a) F. Sassa, G. C. Biswas, H. Suzuki, Lab Chip 2020, 20, 1358;
b) H. Chai, Y. Feng, F. Liang, W. Wang, Lab Chip 2021, 21, 2486;
c) L. Huang, F. Liang, Y. Feng, P. Zhao, W. Wang, Microsyst. Nanoeng. 2020, 6, 57;
d) L. Huang, X. Zhang, Y. Feng, F. Liang, W. Wang, Lab Chip 2022, 22, 1206;
e) T. Zhang, M. Gao, X. Chen, C. Gao, S. Feng, D. Chen, J. Wang, X. Zhao, J. Chen, Nanotechnol. Precis. Eng. 2022, 5, 045002.
D. Spencer, H. Morgan, ACS Sens. 2020, 5, 423.
D. R. Gossett, H. T. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, D. Di Carlo, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 7630.
C. Honrado, P. Bisegna, N. S. Swami, F. Caselli, Lab Chip 2021, 21, 22.
D. Yang, Y. Zhou, Y. Zhou, J. Han, Y. Ai, Biosens. Bioelectron. 2019, 133, 16.
K. Wang, Y. Liu, D. Chen, J. Wang, J. Chen, IEEE Trans. Electron. Dev. 2022, 69, 2015.
P. Li, Y. Ai, Anal. Chem. 2021, 93, 4108.
a) Y. Chen, K. Guo, L. Jiang, S. Zhu, Z. Ni, N. Xiang, Talanta 2022, 251, 123815;
b) J. Zhu, Y. Feng, H. Chai, F. Liang, Z. Cheng, W. Wang, Lab Chip 2023, 23, 2531.
a) T. Tang, X. Liu, Y. Yuan, T. Zhang, R. Kiya, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa, Y. Yalikun, Sens. Actuators, B 2022, 358, 131514;
b) Y. Feng, H. Chai, W. He, F. Liang, Z. Cheng, W. Wang, Small Methods 2022, 6, 2200325.
Q. Fang, Y. Feng, J. Zhu, L. Huang, W. Wang, Anal. Chem. 2023, 95, 6374.
M. Carminati, G. Ferrari, M. D. Vahey, J. Voldman, M. Sampietro, IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1438.
Y. Feng, L. Huang, P. Zhao, F. Liang, W. Wang, Anal. Chem. 2019, 91, 15204.
a) H. Morgan, T. Sun, D. Holmes, S. Gawad, N. G. Green, J. Phys. D Appl. Phys. 2007, 40, 61;
b) T. Sun, N. G. Green, S. Gawad, H. Morgan, IET Nanobiotechnol. 2007, 1, 69.
Y. Feng, Z. Cheng, H. Chai, W. He, L. Huang, W. Wang, Lab Chip 2022, 22, 240.
a) Z. Chen, Y. Zhu, D. Xu, M. M. Alam, L. Shui, H. Chen, Lab Chip 2020, 20, 2343;
b) K. D. Nyberg, K. H. Hu, S. H. Kleinman, D. B. Khismatullin, M. J. Butte, A. C. Rowat, Biophys. J. 2017, 113, 1574.
J. R. Lange, J. Steinwachs, T. Kolb, L. A. Lautscham, I. Harder, G. Whyte, B. Fabry, Biophys. J. 2015, 109, 26.
C. Petchakup, H. Yang, L. Gong, L. He, H. M. Tay, R. Dalan, A. J. Chung, K. H. H. Li, H. W. Hou, Small 2022, 18, 2270093.
O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Topfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, J. Guck, Nat. Methods 2015, 12, 199.
N. Haandbaek, S. C. Bürgel, F. Rudolf, F. Heer, A. Hierlemann, ACS Sens. 2016, 1, 1020.
a) Z. Zhang, T. Zheng, R. Zhu, Sens. Actuator B-Chem. 2020, 304, 127326;
b) L. Huang, P. Zhao, W. Wang, Lab Chip 2018, 18, 2359.
T. Tang, X. Liu, R. Kiya, Y. Shen, Y. Yuan, T. Zhang, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa, Y. Yalikun, Biosens. Bioelectron. 2021, 193, 113521.
H. Chai, Y. Feng, J. Zhu, X. Meng, F. Liang, J. Bai, W. Wang, ACS Sens. 2023, https://doi.org/10.1021/acssensors.3c00533.
M. H. Panhwar, F. Czerwinski, V. A. S. Dabbiru, Y. Komaragiri, B. Fregin, D. Biedenweg, P. Nestler, R. H. Pires, O. Otto, Nat. Commun. 2020, 11, 2190.
M. Liang, D. Yang, Y. Zhou, P. Li, J. Zhong, Y. Ai, Anal. Chem. 2021, 93, 4567.

Auteurs

Yongxiang Feng (Y)

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China.

Junwen Zhu (J)

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China.

Huichao Chai (H)

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China.

Weihua He (W)

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China.

Liang Huang (L)

Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui, 230002, P. R. China.

Wenhui Wang (W)

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Humans Male Female Middle Aged Neoplasm, Residual
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Classifications MeSH