Preexisting Neutralizing Antibodies against Different Adeno-Associated Virus Serotypes in Humans and Large Animal Models for Gene Therapy.

AAV serotypes Adeno-associated virus Anti-AAV immune response Large animal models Neutralizing antibodies Retinal gene therapy

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
medline: 17 7 2023
pubmed: 13 7 2023
entrez: 13 7 2023
Statut: ppublish

Résumé

Gene therapy is a potential cure for several inherited retinal dystrophies, and adeno-associated virus (AAV) has emerged as a vector of choice for therapeutic gene delivery to the retina. However, prior exposure to AAVs can cause a humoral immune response resulting in the presence of antibodies in the serum, which can subsequently interfere with the AAV-mediated gene therapy. The antibodies bind specifically to a serotype but often display broad cross-reactivity. A subset of these antibodies called neutralizing antibodies (NABs) can render the AAV inactive, thereby reducing the efficacy of the therapy. The preexisting NAB levels against different serotypes vary by species, and these variations need to be considered while designing studies. Since large animals often serve as preclinical models to test gene therapies, in this review we compile studies reporting preexisting NABs against commonly used AAV serotypes in humans and large animal models and discuss strategies to deal with NABs.

Identifiants

pubmed: 37440023
doi: 10.1007/978-3-031-27681-1_18
doi:

Substances chimiques

Antibodies, Neutralizing 0
Antibodies, Viral 0

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

117-123

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Adachi K, Dissen GA, Lomniczi A, Xie Q, Ojeda SR, Nakai H. Adeno-associated virus-binding antibodies detected in cats living in the Northeastern United States lack neutralizing activity. Sci Rep. 2020;10(1):1–13. https://doi.org/10.1038/s41598-020-66596-4 .
doi: 10.1038/s41598-020-66596-4
Ail D, Ren D, Brazhnikova E, Nouvel-Jaillard C, Bertin S, Mirashrafi SB, Fisson S, Dalkara D. Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Mol Ther Methods Clin Dev. 2022;24(March):306–16. https://doi.org/10.1016/j.omtm.2022.01.011 .
doi: 10.1016/j.omtm.2022.01.011 pubmed: 35229004 pmcid: 8844404
Greenberg B, Butler J, Felker GM, Felker GM, Ponikowsk P, Zsebo KM. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther. 2016;23:313–9.
doi: 10.1038/gt.2015.109 pubmed: 26699914
Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, Masurier C. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12. https://doi.org/10.1089/hum.2009.182 .
doi: 10.1089/hum.2009.182 pubmed: 20095819
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Dominik Fischer M. Immune responses to retinal gene therapy using adeno-associated viral vectors – implications for treatment success and safety. Prog Retin Eye Res. 2020;83(August):100915. https://doi.org/10.1016/j.preteyeres.2020.100915 .
doi: 10.1016/j.preteyeres.2020.100915 pubmed: 33069860
Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, Wilson JM. Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods. 2015;26(3):103–5. https://doi.org/10.1089/hgtb.2015.082 .
doi: 10.1089/hgtb.2015.082 pubmed: 26067568 pmcid: 4492586
Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90. https://doi.org/10.1086/595830 .
doi: 10.1086/595830 pubmed: 19133809
Calcedo R, Wilson JM. Humoral immune response to AAV. Front Immunol. 2013;4(October):1–7. https://doi.org/10.3389/fimmu.2013.00341 .
doi: 10.3389/fimmu.2013.00341
Calcedo R, Wilson JM. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees. Hum Gene Ther Clin Dev. 2016;27(2):79–82. https://doi.org/10.1089/humc.2016.048 .
doi: 10.1089/humc.2016.048 pubmed: 27314914 pmcid: 4932656
Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, Wilson JM. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Investig. 2013;123(7):2994–3001. https://doi.org/10.1172/JCI68205 .
doi: 10.1172/JCI68205 pubmed: 23778142 pmcid: 3696560
Gao G, Vandenberghe L, Wilson J. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5(3):285–97. https://doi.org/10.2174/1566523054065057 .
doi: 10.2174/1566523054065057 pubmed: 15975006
Halbert CL, Miller D, Mcnamara S, Emerson J, Ronald L, Ramsey B, Aitken ML. Populations: implications for gene therapy using AAV vectors. Hum Gene Ther. 2015;17(4):440–7. https://doi.org/10.1089/hum.2006.17.440.Prevalence .
doi: 10.1089/hum.2006.17.440.Prevalence
Hamilton BA, Fraser Wright J. Challenges posed by immune responses to AAV vectors: addressing root causes. Front Immunol. 2021;12(May):1–8. https://doi.org/10.3389/fimmu.2021.675897 .
doi: 10.3389/fimmu.2021.675897
Kostic C, Arsenijevic Y. Animal modelling for inherited central vision loss. J Pathol. 2016;238(2):300–10. https://doi.org/10.1002/path.4641 .
doi: 10.1002/path.4641 pubmed: 26387748
Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51. https://doi.org/10.1038/nrg3742 .
doi: 10.1038/nrg3742 pubmed: 24840552 pmcid: 4393649
Leborgne C, Barbon E, Alexander JM, Hanby H, Delignat S, Cohen DM, Collaud F, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020;26(7):1096–101. https://doi.org/10.1038/s41591-020-0911-7 .
doi: 10.1038/s41591-020-0911-7 pubmed: 32483358
Li P, Boenzli E, Hofmann-Lehmann R, Katrin Helfer-Hungerbuehler A. Pre-existing antibodies to candidate gene therapy vectors (adeno-associated vector serotypes) in domestic cats. PLoS One. 2019;14(3):1–19. https://doi.org/10.1371/journal.pone.0212811 .
doi: 10.1371/journal.pone.0212811
Li W, Asokan A, Zhijian W, Van Dyke T, DiPrimio N, Jarrod JS, Govindaswamy L, et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther. 2008;16(7):1252–60. https://doi.org/10.1038/mt.2008.100 .
doi: 10.1038/mt.2008.100 pubmed: 28178482
Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol. 2006;24(2):198–204. https://doi.org/10.1038/nbt1182 .
doi: 10.1038/nbt1182 pubmed: 16429148
Mimuro J, Mizukami H, Shima M, Matsushita T, Taki M, Muto S, Higasa S, et al. The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals. J Med Virol. 2014;86(11):1990–7. https://doi.org/10.1002/jmv.23818 .
doi: 10.1002/jmv.23818 pubmed: 24136735
Mingozzi F, Hui DJ, Yazicioglu M, Elkouby L, Hinderer CJ, Basner-tschakarjan E, Wright JF, High KA. Overcoming pre-existing humoral immunity to AAV using capsid decoys. Mol Ther. 2013;21(61):S45. https://doi.org/10.1016/s1525-0016(16)34445-8 .
doi: 10.1016/s1525-0016(16)34445-8
Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, Hajjar RJ, Weber T. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther. 2012;20(1):73–83. https://doi.org/10.1038/mt.2011.177 .
doi: 10.1038/mt.2011.177 pubmed: 21915102
Shin JH, Yue Y, Smith B, Duan D. Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs. Hum Gene Ther. 2012;23(3):287–94. https://doi.org/10.1089/hum.2011.125 .
doi: 10.1089/hum.2011.125 pubmed: 22040468
Sun L, Lingli T, Gao G, Sun X, Duan J, You L. Assessment of a passive immunity mouse model to quantitatively analyze the impact of neutralizing antibodies on adeno-associated virus-mediated gene transfer. J Immunol Methods. 2013;387(1–2):114–20. https://doi.org/10.1016/j.jim.2012.10.003 .
doi: 10.1016/j.jim.2012.10.003 pubmed: 23063691
Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G, Arruda VR, Agbandje-McKenna M, Porada CD. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One. 2013;8(9):1–11. https://doi.org/10.1371/journal.pone.0075142 .
doi: 10.1371/journal.pone.0075142
Tse LV, Klinc KA, Madigan VJ, Castellanos RM, Rivera LF, Wells LP, Havlik JK, Smith MA-MK, Asokan A. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A. 2017;114(24):E4812–21. https://doi.org/10.1073/pnas.1704766114 .
doi: 10.1073/pnas.1704766114 pubmed: 28559317 pmcid: 5474820
Unzu C, Hervás-Stubbs S, Sampedro A, Mauleón I, Mancheño U, Alfaro C, de Salamanca RE, et al. Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. J Transl Med. 2012;10:122. https://doi.org/10.1186/1479-5876-10-122 .
doi: 10.1186/1479-5876-10-122 pubmed: 22704060 pmcid: 3412719
Wang D, Zhong L, Li M, Li J, Tran K, Ren L, He R, et al. Adeno-associated virus neutralizing antibodies in large animals and their impact on brain intraparenchymal gene transfer. Mol Ther Methods Clin Dev. 2018;11(December):65–72. https://doi.org/10.1016/j.omtm.2018.09.003 .
doi: 10.1016/j.omtm.2018.09.003 pubmed: 30397628 pmcid: 6205343
Wang Y, Liu Q, Huang W, Zhang H, Wang Y, Zhao J, Song A, Xie H, Zhao C, Gao D. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Ther. 2014;21(8):732–8. https://doi.org/10.1038/gt.2014.47 .
doi: 10.1038/gt.2014.47 pubmed: 24849042
Winkler PA, Occelli LM, Petersen-Jones SM. Large animal models of inherited retinal degenerations: a review. Cell. 2020;9(4):882. https://doi.org/10.3390/cells9040882 .
doi: 10.3390/cells9040882
Wu Z, Asokan A, Jude Samulski R. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27. https://doi.org/10.1016/j.ymthe.2006.05.009 .
doi: 10.1016/j.ymthe.2006.05.009 pubmed: 16824801

Auteurs

Divya Ail (D)

Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France. divya.ail@inserm.fr.

Deniz Dalkara (D)

Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH