Ocular examination findings and selected ophthalmic diagnostic tests in African green monkeys (Chlorocebus aethiops sabaeus).
Chlorocebus aethiops sabaeus
African green monkey
Florida spots
Schirmer tear test
intraocular pressure
tropical keratopathy
Journal
Veterinary ophthalmology
ISSN: 1463-5224
Titre abrégé: Vet Ophthalmol
Pays: England
ID NLM: 100887377
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
revised:
26
06
2023
received:
08
04
2023
accepted:
04
07
2023
medline:
18
3
2024
pubmed:
14
7
2023
entrez:
13
7
2023
Statut:
ppublish
Résumé
To document ocular lesions and establish ophthalmic diagnostic test reference values in a colony of African green monkeys (Chlorocebus aethiops sabaeus). Fifty one geriatric (GAGM, 19-30 years old), 10 adult (AAGM, 5-9 years old) and 10 juvenile (JAGM, <2 years old) African green monkeys housed in a single Caribbean research colony. Ocular biomicroscopy, indirect fundoscopy, Schirmer tear test (STT), rebound tonometry (TonoVet®) and corneal fluorescein staining were performed. Mixed ANCOVA tests were performed to compare STT and IOP between groups. Common ocular lesions in GAGM included vitreal degeneration (27/51, 51/102 eyes) and cataracts (21/51, 32/102 eyes). Vitreal degeneration was also common in AAGM (8/10, 16/20 eyes) and infrequent in JAGM (3/10, 6/20 eyes). Cataracts were not present in any JAGM or AAGM. All eyes in all three groups had perilimbal corneal pigmentation and faint lace-like anterior corneal stromal opacification. Median (range) STT values were 16.0 (18) mm/min in GAGM. Mean (SD) STT values were 14.2 (4.6) mm/min in AAGM, and 8.9 (3.4) mm/min in JAGM. Median (range) IOP values were 16.5 (27) mmHg in GAGM. Mean (SD) IOP values were 18.0 (2.8) mmHg in AAGM, and 14.1 (2.2) mmHg in JAGM. JAGM had significantly lower STT and IOP values compared to AAGM (p = .0449, .0057, respectively) and GAGM (p = .0002, .0130, respectively). Spontaneous ocular lesions were common in geriatric monkeys in this research colony. IOP and STT values were lower in juvenile African green monkeys relative to adult or geriatric animals.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
158-169Informations de copyright
© 2023 American College of Veterinary Ophthalmologists.
Références
Poirier FE. The St. Kitts green monkey (Cercopithecus aethiops sabaeus): ecology, population dynamics, and selected behavioral traits. Folia Primatol. 1972;17(1):20-55.
Fairbanks LA, McGuire M. Relationships of vervet mothers with sons and daughters from one through three years of age. Anim Behav. 1985;33(1):40-50.
Horrocks J. Life-history characteristics of a wild population of vervets (Cercopithecus aethiops sabaeus) in Barbados, West Indies. Int J Primatol. 1986;7(1):31-47.
Hiyaoka A, Yoshida T, Cho F, Goto N. Growth curves of body weight and their relationship to sexual maturity in laboratory-bred male African green monkeys (Cercopithecus aethiops). Jikken Dobutsu. 1990;39(3):345-352.
Weigl R. Longevity of Mammals in Captivity; from the Living Collections of the World. Schweizerbart Science Publishers; 2005.
Frye BM, Craft S, Latimer CS, et al. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol. 2021;83(11):e23260.
Jasinska AJ, Schmitt CA, Service SK, et al. Systems biology of the vervet monkey. ILAR J. 2013;54(2):122-143. doi:10.1093/ilar/ilt049
Gordon S, Pandrea I, Dunham R, Apetrei C, Silvestri G. The call of the wild: what can be learned from studies of SIV infection of natural hosts. HIV Seq Compend. 2005;2005:2-29.
Baulu J, Evans G, Sutton C. Pathogenic agents found in Barbados Chlorocebus aethiops sabaeus and in Old World monkeys commonly used in biomedical research. Lab Primate Newsl. 2002;41:4-6.
Ervin F, Palmour R. Primates for 21st century biomedicine: the St. Kitts vervet (Chlorocebus aethiops, SK). International Perspectives: the Future of Nonhuman Primate Resources. National Research Council; 2003:49-53.
Warren WC, Jasinska AJ, García-Pérez R, et al. The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Res. 2015;25(12):1921-1933.
Jasinska AJ, Levinson M, Slaten E, et al. A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus). Mamm Genome. 2007;18(5):347-360.
Ward KW, Coon DJ, Magiera D, Bhadresa S, Nisbett E, Lawrence MS. Exploration of the African green monkey as a preclinical pharmacokinetic model: intravenous pharmacokinetic parameters. Drug Metab Dispos. 2008;36(4):715-720.
Ward KW, Coon DJ, Magiera D, Bhadresa S, Struharik M, Lawrence MS. Exploration of the African green monkey as a preclinical pharmacokinetic model: oral pharmacokinetic parameters and drug-drug interactions. Xenobiotica. 2009;39(3):266-272.
Glogowski S, Ward KW, Lawrence MS, Goody RJ, Proksch JW. The use of the African green monkey as a preclinical model for ocular pharmacokinetic studies. J Ocul Pharmacol Ther. 2012;28(3):290-298.
Liddie S, Goody RJ, Valles R, Lawrence MS. Clinical chemistry and hematology values in a Caribbean population of African green monkeys. J Med Primatol. 2010;39(6):389-398.
Altshuler HL, Stowell RE. Normal serum biochemical values of Cercopithecus aethiops, Cercocebus atys, and Presbytis entellus. Lab Anim Sci. 1972;22(5):692-704.
Hambleton P, Harris-Smith PW, Baskerville A, Bailey NE, Pavey KJ. Normal values for some whole blood and serum components of grivet monkeys (Cercopithecus aethiops). Lab Anim. 1979;13(2):87-91.
Casacó A, Beausoleil I, Gonzalez B, et al. Hematological, biochemical, respiratory, cardiovascular and electroneurophysiological parameters in African green monkeys (Cercopithecus aethiops sabaeus). Its use in non-clinical toxicological studies. J Med Primatol. 2010;39(3):177-186.
Kagira JM, Ngotho M, Thuita JK, Maina NW, Hau J. Hematological changes in vervet monkeys (Chlorocebus aethiops) during eight months' adaptation to captivity. Am J Primatol. 2007;69(9):1053-1063.
Fincham JE, Faber M, Weight MJ, et al. Diets realistic for westernized people significantly effect lipoproteins, calcium, zinc, vitamins C, E, B6 and haematology in vervet monkeys. Atherosclerosis. 1987;66(3):191-203.
Johnson Q, Veith WJ, Mouton T. The impact of dietary protein intake on serum biochemical and haematological profiles in vervet monkeys. J Med Primatol. 2001;30(1):61-69.
Sato A, Fairbanks LA, Lawson T, Lawson GW. Effects of age and sex on hematologic and serum biochemical values of vervet monkeys (Chlorocebus aethiops sabaeus). J Am Assoc Lab Anim Sci. 2005;44(1):29-34.
Castro J, Puente P, Martínez R, et al. Measurement of hematological and serum biochemical normal values of captive housed Chlorocebus aethiops sabaeus monkeys and correlation with the age. J Med Primatol. 2016;45(1):12-20.
de Villiers C, Seier JV, Dhansay MA. Probable genetic origin for a large number of cataracts among captive-bred vervet monkeys (Chlorocebus aethiops). Am J Primatol. 2001;55(1):43-48.
Plesker R, Hetzel U, Schmidt W. Cataracts in a laboratory colony of African green monkeys (Chlorocebus aethiops). J Med Primatol. 2005;34(3):139-146.
Liddie S, Okamoto H, Gromada J, Lawrence M. Characterization of glucose-stimulated insulin release protocols in african green monkeys (Chlorocebus aethiops). J Med Primatol. 2019;48(1):10-21. doi:10.1111/jmp.12374
Diop OM, Gueye A, Dias-Tavares M, et al. High levels of viral replication during primary simian immunodeficiency virus SIVagm infection are rapidly and strongly controlled in African green monkeys. J Virol. 2000;74(16):7538-7547. doi:10.1128/jvi.74.16.7538-7547.2000
Peiffer R Jr, Jackson W. Mycotic keratopathy of the dog and cat in the southeastern United States: a preliminary report. J Am Anim Hosp Assoc. 1979;15:94-97.
Tucker G, Karpinski L, Fuseler J. Morphology and distribution of light-scattering granules in the corneas of South Florida cats. J Cell Biol. 1979;83:479A.
Barros PSD, Safatle AMV. Florida spots in dogs and cats. A clinical study in São Paulo-Brazil. Braz J Vet Res Anim Sci. 1997;34(5):276-277.
Roze M, Plisnier M, Sottovia J-L, Cloet P. Etude de la keratopathie tropicale a la Martinique. Rev Med Vet (Toulouse). 2004;155(12):598-601.
Michaud B. Kératopathie atypique chez 3 chats d'un même propriétaire. Point Vét. 2010;41(303).
Bolfa P, Kelly SJ, Wells HC, et al. Tropical keratopathy (Florida spots) in cats. Vet Pathol. 2018;55(6):861-870.
Perea-García JO, Danel DP, Monteiro A. Diversity in primate external eye morphology: previously undescribed traits and their potential adaptive value. Symmetry. 2021;13(7):1270.
Jaax GP, Graham RR, Rozmiarek H. The Schirmer tear test in rhesus monkeys (Macaca mulatta). Lab Anim Sci. 1984;34(3):293-294.
Montiani-Ferreira F, Shaw G, Mattos BC, Russ HH, Vilani RG. Reference values for selected ophthalmic diagnostic tests of the capuchin monkey (Cebus apella). Vet Ophthalmol. 2008;11(3):197-201.
Oriá AP, Pinna MH, Almeida DS, et al. Conjunctival flora, Schirmer's tear test, intraocular pressure, and conjunctival cytology in neotropical primates from Salvador, Brazil. J Med Primatol. 2013;42(6):287-292.
Maitchouk DY, Beuerman RW, Ohta T, Stern M, Varnell RJ. Tear production after unilateral removal of the main lacrimal gland in squirrel monkeys. Arch Ophthalmol. 2000;118(2):246-252.
Lange RR, Lima L, Montiani-Ferreira F. Measurement of tear production in black-tufted marmosets (Callithrix penicillata) using three different methods: modified Schirmer's I, phenol red thread and standardized endodontic absorbent paper points. Vet Ophthalmol. 2012;15(6):376-382.
Bezerra KPG, de Lucena RB, Stipp DT, et al. Determination of baseline values for routine ophthalmic tests in bearded capuchin (Sapajus libidinosus). J Med Primatol. 2019;48(1):3-9.
Chidi-Egboka NC, Briggs NE, Jalbert I, Golebiowski B. The ocular surface in children: a review of current knowledge and meta-analysis of tear film stability and tear secretion in children. Ocular Surface. 2019;17(1):28-39. doi:10.1016/j.jtos.2018.09.006
Bito LZ, Merritt SQ, DeRousseau CJ. Intraocular pressure of rhesus monkey (Macaca mulatta). I. an initial survey of two free-breeding colonies. Invest Ophthalmol Vis Sci. 1979;18(8):785-793.
Lin KH, Tran T, Kim S, et al. Advanced retinal imaging and ocular parameters of the rhesus macaque eye. Transl Vis Sci Technol. 2021;10(6):7.
De Rousseau CJ, Bito LZ. Intraocular pressure of rhesus monkeys (Macaca mulatta). II. Juvenile ocular hypertension and its apparent relationship to ocular growth. Exp Eye Res. 1981;32(4):407-417.
Jaafar MS, Kazi GA. Normal intraocular pressure in children: a comparative study of the Perkins applanation tonometer and the pneumatonometer. J Pediatr Ophthalmol Strabismus. 1993;30(5):284-287. doi:10.3928/0191-3913-19930901-04
Sihota R, Tuli D, Dada T, Gupta V, Sachdeva MM. Distribution and determinants of intraocular pressure in a normal pediatric population. J Pediatr Ophthalmol Strabismus. 2006;43(1):14-18; quiz 36-7. doi:10.3928/01913913-20060101-01
Kovalcuka L, Birgele E, Bandere D, Williams DL. The effects of ketamine hydrochloride and diazepam on the intraocular pressure and pupil diameter of the dog's eye. Vet Ophthalmol. 2013;16(1):29-34.
Hofmeister EH, Mosunic CB, Torres BT, Ralph AG, Moore PA, Read MR. Effects of ketamine, diazepam, and their combination on intraocular pressures in clinically normal dogs. Am J Vet Res. 2006;67(7):1136-1139.
Erickson-Lamy KA, Kaufman PL, McDermott ML, France NK. Comparative anesthetic effects on aqueous humor dynamics in the cynomolgus monkey. Arch Ophthalmol. 1984;102(12):1815-1820.
Komaromy AM, Brooks DE, Kubilis PS, et al. Diurnal intraocular pressure curves in healthy rhesus macaques (Macaca mulatta) and rhesus macaques with normotensive and hypertensive primary open-angle glaucoma. J Glaucoma. 1998;7(2):128-131.
Wilson KI, Godara P, Jasien JV, et al. Intra-subject variability and diurnal cycle of ocular perfusion pressure as characterized by continuous telemetry in nonhuman primates. Invest Ophthalmol Vis Sci. 2020;61(6):7.
Turner DC, Samuels BC, Huisingh C, Girkin CA, Downs JC. The magnitude and time course of IOP change in response to body position change in nonhuman primates measured using continuous IOP telemetry. Invest Ophthalmol Vis Sci. 2017;58(14):6232-6240.
Turner DC, Miranda M, Morris JS, Girkin CA, Downs JC. Acute stress increases intraocular pressure in nonhuman primates. Ophthalmol Glaucoma. 2019;2(4):210-214.
Pekmezci M, Chang ST, Wilson BS, Gordon MO, Bhorade AM. Effect of measurement order between right and left eyes on intraocular pressure measurement. Arch Ophthalmol. 2011;129(3):276-281.
Rice N, Jones BR, Ashton N. Punctate keratopathy of west Indians. Br J Ophthalmol. 1968;52(12):865-875.
Galvis V, Tello A, Jaramillo LC, Paredes D, Camacho PA. Prevalence of punctate keratopathy of west Indians in a Colombian referral center and a new name proposed: Rice's keratopathy. Open Ophthalmol J. 2015;9:12-16.
Vurgese S, Panda-Jonas S, Saini N, Sinha A, Nangia V, Jonas JB. Corneal arcus and its associations with ocular and general parameters: the Central India eye and medical study. Invest Ophthalmol Vis Sci. 2011;52(13):9636-9643.
Hashemi H, Khabazkhoob M, Emamian MH, Shariati M, Fotouhi A. A population-based study of corneal arcus and its risk factors in Iran. Ophthalmic Epidemiol. 2014;21(5):339-344.
Baroody R, Bito L, DeRousseau C, Kaufman P. Ocular development and aging. 1. Corneal endothelial changes in cats and in free-ranging and caged rhesus monkeys. Exp Eye Res. 1987;45(4):607-622.
Sigmund AB, Cushing AC, Hendrix DVH. Ophthalmic findings in 10 captive, anesthetized chimpanzees (Pan troglodytes). Vet Ophthalmol. 2020;23(4):760-763. doi:10.1111/vop.12766
Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam study. Arch Ophthalmol. 1998;116(5):653-658. doi:10.1001/archopht.116.5.653