FGF23 and klotho at the intersection of kidney and cardiovascular disease.


Journal

Nature reviews. Cardiology
ISSN: 1759-5010
Titre abrégé: Nat Rev Cardiol
Pays: England
ID NLM: 101500075

Informations de publication

Date de publication:
Jan 2024
Historique:
accepted: 13 06 2023
pubmed: 14 7 2023
medline: 14 7 2023
entrez: 14 7 2023
Statut: ppublish

Résumé

Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.

Identifiants

pubmed: 37443358
doi: 10.1038/s41569-023-00903-0
pii: 10.1038/s41569-023-00903-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

11-24

Informations de copyright

© 2023. Springer Nature Limited.

Références

National Institute of Diabetes and Digestive and Kidney Diseases. 2022 Annual Data Report. United States Renal Data System https://usrds-adr.niddk.nih.gov/2022 (2022).
Ortiz, A. et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383, 1831–1843 (2014).
pubmed: 24856028 doi: 10.1016/S0140-6736(14)60384-6
Navaneethan, S. D. et al. Prevalence, predictors, and outcomes of pulmonary hypertension in CKD. J. Am. Soc. Nephrol. 27, 877–886 (2016).
pubmed: 26386072 doi: 10.1681/ASN.2014111111
Consortium, A. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).
doi: 10.1038/81664
Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).
pubmed: 11344269 pmcid: 33497 doi: 10.1073/pnas.101545198
Wolf, M. et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. J. Am. Med. Assoc. 323, 432–443 (2020).
doi: 10.1001/jama.2019.22450
Francis, F. et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet 11, 130–136 (1995).
doi: 10.1038/ng1095-130
Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).
pubmed: 19033649 pmcid: 2586800 doi: 10.1172/JCI36479
Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).
pubmed: 14966565 pmcid: 338262 doi: 10.1172/JCI200419081
Saito, H. et al. Human fibroblast growth factor-23 mutants suppress Na
pubmed: 12419819 doi: 10.1074/jbc.M207872200
Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).
pubmed: 15040831 doi: 10.1359/JBMR.0301264
Benet-Pages, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).
pubmed: 15590700 doi: 10.1093/hmg/ddi034
Musgrove, J. & Wolf, M. Regulation and effects of FGF23 in chronic kidney disease. Annu. Rev. Physiol. 82, 365–390 (2020).
pubmed: 31743079 doi: 10.1146/annurev-physiol-021119-034650
Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).
pubmed: 17968495 doi: 10.1007/s00774-007-0779-3
Zhou, W. et al. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J. Clin. Invest. https://doi.org/10.1172/JCI164610 (2023).
doi: 10.1172/JCI164610 pubmed: 38038129 pmcid: 10688982
Simic, P. et al. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J. Clin. Invest. 130, 1513–1526 (2020).
pubmed: 32065590 pmcid: 7269595 doi: 10.1172/JCI131190
Bar, L., Stournaras, C., Lang, F. & Foller, M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett. 593, 1879–1900 (2019).
pubmed: 31199502 doi: 10.1002/1873-3468.13494
Gattineni, J. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Ren. Physiol. 297, F282–F291 (2009).
doi: 10.1152/ajprenal.90742.2008
Gattineni, J., Twombley, K., Goetz, R., Mohammadi, M. & Baum, M. Regulation of serum 1,25(OH)
doi: 10.1152/ajprenal.00740.2010
Gattineni, J. et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am. J. Physiol. Ren. Physiol. 306, F351–F358 (2014).
doi: 10.1152/ajprenal.00232.2013
Andrukhova, O. et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2–SGK1 signaling pathway. Bone 51, 621–628 (2012).
pubmed: 22647968 pmcid: 3419258 doi: 10.1016/j.bone.2012.05.015
Edmonston, D. & Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 16, 7–19 (2020).
pubmed: 31519999 doi: 10.1038/s41581-019-0189-5
Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).
pubmed: 19966287 doi: 10.1073/pnas.0902006107
Wolf, M., Koch, T. A. & Bregman, D. B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28, 1793–1803 (2013).
pubmed: 23505057 doi: 10.1002/jbmr.1923
Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).
pubmed: 23403721 pmcid: 3695728 doi: 10.1038/nrm3528
Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).
pubmed: 9363890 doi: 10.1038/36285
Nakatani, T. et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).
pubmed: 18835926 pmcid: 2630784 doi: 10.1096/fj.08-114397
Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).
pubmed: 17086194 doi: 10.1038/nature05315
Bai, X., Dinghong, Q., Miao, D., Goltzman, D. & Karaplis, A. C. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a klotho-deficient phenotype. Am. J. Physiol. Endocrinol. Metab. 296, E79–E88 (2009).
pubmed: 18984852 doi: 10.1152/ajpendo.90539.2008
Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).
pubmed: 16436388 doi: 10.1074/jbc.C500457200
Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).
pubmed: 17992255 pmcid: 2066196
Lim, K. et al. α-Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 100, E1308–E1318 (2015).
pubmed: 26280509 pmcid: 4596032 doi: 10.1210/jc.2015-1800
Hu, M. C. et al. Renal production, uptake, and handling of circulating αKlotho. J. Am. Soc. Nephrol. 27, 79–90 (2016).
pubmed: 25977312 doi: 10.1681/ASN.2014101030
Lindberg, K. et al. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).
pubmed: 24854271 pmcid: 4178446 doi: 10.1681/ASN.2013111209
Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of klotho by ADAM10 and ADAM17. Proc. Natl Acad. Sci. USA 104, 19796–19801 (2007).
doi: 10.1073/pnas.0709805104
Bloch, L. et al. Klotho is a substrate for α-, β- and γ-secretase. FEBS Lett. 583, 3221–3224 (2009).
pubmed: 19737556 pmcid: 2757472 doi: 10.1016/j.febslet.2009.09.009
van Loon, E. P. et al. Shedding of klotho by ADAMs in the kidney. Am. J. Physiol. Ren. Physiol. 309, F359–F368 (2015).
doi: 10.1152/ajprenal.00240.2014
Chen, C. D. et al. Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein klotho. PLoS ONE 15, e0226382 (2020).
pubmed: 31929539 pmcid: 6957300 doi: 10.1371/journal.pone.0226382
Neyra, J. A. et al. Performance of soluble klotho assays in clinical samples of kidney disease. Clin. Kidney J. 13, 235–244 (2020).
pubmed: 32297879 doi: 10.1093/ckj/sfz085
Mencke, R. et al. Human alternative klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease. JCI Insight 2, e94375 (2017).
pubmed: 29046474 pmcid: 5846909 doi: 10.1172/jci.insight.94375
Roig-Soriano, J. et al. Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure. Sci. Rep. 13, 4211 (2023).
pubmed: 36918615 pmcid: 10014869 doi: 10.1038/s41598-023-31117-6
Richter, B. & Faul, C. FGF23 actions on target tissues – with and without klotho. Front. Endocrinol. 9, 189 (2018).
doi: 10.3389/fendo.2018.00189
Dalton, G. et al. Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc. Natl Acad. Sci. USA 114, 752–757 (2017).
pubmed: 28069944 pmcid: 5278494 doi: 10.1073/pnas.1620301114
Wright, J. D., An, S. W., Xie, J., Lim, C. & Huang, C. L. Soluble klotho regulates TRPC6 calcium signaling via lipid rafts, independent of the FGFR-FGF23 pathway. FASEB J. 33, 9182–9193 (2019).
pubmed: 31063704 pmcid: 6662984 doi: 10.1096/fj.201900321R
Juppner, H. & Wolf, M. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J. Clin. Invest. 122, 4336–4339 (2012).
pubmed: 23187136 pmcid: 3533569 doi: 10.1172/JCI67055
Smith, R. C. et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest. 122, 4710–4715 (2012).
pubmed: 23187128 pmcid: 3533557 doi: 10.1172/JCI64986
Chen, G. et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553, 461–466 (2018).
pubmed: 29342138 pmcid: 6007875 doi: 10.1038/nature25451
Grabner, A. et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22, 1020–1032 (2015).
pubmed: 26437603 pmcid: 4670583 doi: 10.1016/j.cmet.2015.09.002
Smith, E. R., Holt, S. G. & Hewitson, T. D. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-β autoinduction. Int. J. Biochem. Cell Biol. 92, 63–78 (2017).
pubmed: 28919046 doi: 10.1016/j.biocel.2017.09.009
Yanucil, C. et al. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 102, 261–279 (2022).
pubmed: 35513125 pmcid: 9329240 doi: 10.1016/j.kint.2022.03.028
Grabner, A. & Faul, C. The role of fibroblast growth factor 23 and klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens. 25, 314–324 (2016).
pubmed: 27219043 pmcid: 4891254 doi: 10.1097/MNH.0000000000000231
Courbon, G. et al. Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res. 9, 35 (2021).
pubmed: 34334787 pmcid: 8326281 doi: 10.1038/s41413-021-00154-0
David, V. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89, 135–146 (2016).
pubmed: 26535997 pmcid: 4854810 doi: 10.1038/ki.2015.290
Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).
pubmed: 16123154 doi: 10.1210/en.2005-0777
Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).
pubmed: 21115613 pmcid: 3014041 doi: 10.1681/ASN.2009121311
Thompson, S. et al. Cause of death in patients with reduced kidney function. J. Am. Soc. Nephrol. 26, 2504–2511 (2015).
pubmed: 25733525 pmcid: 4587695 doi: 10.1681/ASN.2014070714
Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).
pubmed: 18687639 pmcid: 2890264 doi: 10.1056/NEJMoa0706130
Isakova, T. et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. J. Am. Med. Assoc. 305, 2432–2439 (2011).
doi: 10.1001/jama.2011.826
Komaba, H. et al. Fibroblast growth factor 23 and mortality among prevalent hemodialysis patients in the Japan Dialysis Outcomes and Practice Patterns study. Kidney Int. Rep. 5, 1956–1964 (2020).
pubmed: 33163716 pmcid: 7609896 doi: 10.1016/j.ekir.2020.08.013
Sharma, S. et al. FGF23 and cause-specific mortality in community-living individuals – the Health, Aging, and Body Composition study. J. Am. Geriatr. Soc. 69, 711–717 (2021).
pubmed: 33170519 doi: 10.1111/jgs.16910
Souma, N. et al. Fibroblast growth factor 23 and cause-specific mortality in the general population: the Northern Manhattan study. J. Clin. Endocrinol. Metab. 101, 3779–3786 (2016).
pubmed: 27501282 pmcid: 5052338 doi: 10.1210/jc.2016-2215
Liu, M. et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: a systematic review and dose-response meta-analysis. Front. Cardiovasc. Med. 9, 989574 (2022).
pubmed: 36407457 pmcid: 9669381 doi: 10.3389/fcvm.2022.989574
Isakova, T. et al. Longitudinal FGF23 trajectories and mortality in patients with CKD. J. Am. Soc. Nephrol. 29, 579–590 (2018).
pubmed: 29167351 doi: 10.1681/ASN.2017070772
Kang, M. et al. In-center nocturnal hemodialysis reduced the circulating FGF23, left ventricular hypertrophy, and all-cause mortality: a retrospective cohort study. Front. Med. 9, 912764 (2022).
doi: 10.3389/fmed.2022.912764
Moe, S. M. et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial. Circulation 132, 27–39 (2015).
pubmed: 26059012 doi: 10.1161/CIRCULATIONAHA.114.013876
Macdougall, I. C. et al. Intravenous iron in patients undergoing maintenance hemodialysis. N. Engl. J. Med. 380, 447–458 (2019).
pubmed: 30365356 doi: 10.1056/NEJMoa1810742
Vergaro, G. et al. Discharge FGF23 level predicts one year outcome in patients admitted with acute heart failure. Int. J. Cardiol. 336, 98–104 (2021).
pubmed: 34019969 doi: 10.1016/j.ijcard.2021.05.028
Poelzl, G. et al. FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur. J. Clin. Invest. 44, 1150–1158 (2014).
pubmed: 25294008 doi: 10.1111/eci.12349
Gruson, D. et al. C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides 37, 258–262 (2012).
pubmed: 22902597 doi: 10.1016/j.peptides.2012.08.003
von Jeinsen, B. et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart–bone axis. ESC Heart Fail. 6, 536–544 (2019).
doi: 10.1002/ehf2.12416
Plischke, M. et al. Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur. J. Clin. Invest. 42, 649–656 (2012).
pubmed: 22150123 doi: 10.1111/j.1365-2362.2011.02631.x
Kanagala, P. et al. Fibroblast-growth-factor-23 in heart failure with preserved ejection fraction: relation to exercise capacity and outcomes. ESC Heart Fail. 7, 4089–4099 (2020).
pubmed: 32935918 pmcid: 7755022 doi: 10.1002/ehf2.13020
Roy, C. et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail. 7, 2494–2507 (2020).
pubmed: 32578967 pmcid: 7524237 doi: 10.1002/ehf2.12816
Wohlfahrt, P. et al. Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail. 3, 829–839 (2015).
pubmed: 26450001 doi: 10.1016/j.jchf.2015.05.012
Yan, Y. & Chen, J. Association between serum klotho concentration and all-cause and cardiovascular mortality among American individuals with hypertension. Front. Cardiovasc. Med. 9, 1013747 (2022).
pubmed: 36457804 pmcid: 9705974 doi: 10.3389/fcvm.2022.1013747
Kresovich, J. K. & Bulka, C. M. Low serum klotho associated with all-cause mortality among a nationally representative sample of American adults. J. Gerontol. A Biol. Sci. Med. Sci. 77, 452–456 (2022).
pubmed: 34628493 doi: 10.1093/gerona/glab308
Seiler, S. et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin. J. Am. Soc. Nephrol. 9, 1049–1058 (2014).
pubmed: 24677555 pmcid: 4046724 doi: 10.2215/CJN.07870713
Brandenburg, V. M. et al. Soluble klotho and mortality: the Ludwigshafen Risk and Cardiovascular Health study. Atherosclerosis 242, 483–489 (2015).
pubmed: 26298739 doi: 10.1016/j.atherosclerosis.2015.08.017
Memmos, E. et al. Soluble klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 20, 217 (2019).
pubmed: 31185930 pmcid: 6560885 doi: 10.1186/s12882-019-1391-1
Ko, G. J. et al. The association of klotho gene polymorphism with the mortality of patients on maintenance dialysis. Clin. Nephrol. 80, 263–269 (2013).
pubmed: 23993164 doi: 10.5414/CN107800
Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).
pubmed: 21985788 pmcid: 3204831 doi: 10.1172/JCI46122
Unger, E. D. et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 18, 103–112 (2016).
pubmed: 26635076 doi: 10.1002/ejhf.445
Di Marco, G. S. et al. Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. Eur. Heart J. 32, 1935–1945 (2011).
pubmed: 21138940 doi: 10.1093/eurheartj/ehq436
Hu, M. C. et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26, 1290–1302 (2015).
pubmed: 25326585 doi: 10.1681/ASN.2014050465
Kieswich, J. E. et al. A novel model of reno-cardiac syndrome in the C57BL/6 mouse strain. BMC Nephrol. 19, 346 (2018).
pubmed: 30509210 pmcid: 6278034 doi: 10.1186/s12882-018-1155-3
Olauson, H., Mencke, R., Hillebrands, J. L. & Larsson, T. E. Tissue expression and source of circulating αKlotho. Bone 100, 19–35 (2017).
pubmed: 28323144 doi: 10.1016/j.bone.2017.03.043
Wilkins, B. J. et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).
pubmed: 14656927 doi: 10.1161/01.RES.0000109415.17511.18
Leifheit-Nestler, M. et al. Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol. Dial. Transpl. 33, 1722–1734 (2018).
doi: 10.1093/ndt/gfy006
Lee, T. W. et al. Fibroblast growth factor 23 stimulates cardiac fibroblast activity through phospholipase C-mediated calcium signaling. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23010166 (2021).
doi: 10.3390/ijms23010166 pubmed: 35008852 pmcid: 8745242
Kuga, K. et al. Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1. PLoS ONE 15, e0231905 (2020).
pubmed: 32315372 pmcid: 7173860 doi: 10.1371/journal.pone.0231905
Touchberry, C. D. et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am. J. Physiol. Endocrinol. Metab. 304, E863–E873 (2013).
pubmed: 23443925 pmcid: 3625783 doi: 10.1152/ajpendo.00596.2012
Grabner, A. et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 7, 1993 (2017).
pubmed: 28512310 pmcid: 5434018 doi: 10.1038/s41598-017-02068-6
Navarro-Garcia, J. A. et al. Fibroblast growth factor-23 promotes rhythm alterations and contractile dysfunction in adult ventricular cardiomyocytes. Nephrol. Dial. Transpl. 34, 1864–1875 (2019).
doi: 10.1093/ndt/gfy392
Verkaik, M. et al. High fibroblast growth factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes. Physiol. Rep. 6, e13591 (2018).
pubmed: 29611320 pmcid: 5880876 doi: 10.14814/phy2.13591
Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6, 744–759 (2014).
pubmed: 24797667 pmcid: 4203353 doi: 10.1002/emmm.201303716
Dai, B. et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS ONE 7, e44161 (2012).
pubmed: 22970174 pmcid: 3435395 doi: 10.1371/journal.pone.0044161
Han, X. et al. Cardiovascular effects of renal distal tubule deletion of the FGF receptor 1 gene. J. Am. Soc. Nephrol. 29, 69–80 (2018).
pubmed: 28993502 doi: 10.1681/ASN.2017040412
Bockmann, I. et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20184634 (2019).
doi: 10.3390/ijms20184634 pubmed: 31540546 pmcid: 6770314
Mhatre, K. N. et al. Crosstalk between FGF23- and angiotensin II-mediated Ca
pubmed: 30062428 doi: 10.1007/s00018-018-2885-x
Singh, S. et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 90, 985–996 (2016).
pubmed: 27457912 pmcid: 5065745 doi: 10.1016/j.kint.2016.05.019
Coe, L. M. et al. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J. Biol. Chem. 289, 9795–9810 (2014).
pubmed: 24509850 pmcid: 3975025 doi: 10.1074/jbc.M113.527150
Agoro, R. et al. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 32, 3752–3764 (2018).
pubmed: 29481308 pmcid: 5998980 doi: 10.1096/fj.201700667R
Han, X., Cai, C., Xiao, Z. & Quarles, L. D. FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble klotho in mice. J. Mol. Cell Cardiol. 138, 66–74 (2020).
pubmed: 31758962 doi: 10.1016/j.yjmcc.2019.11.149
Francis, C. et al. Ferric citrate reduces fibroblast growth factor 23 levels and improves renal and cardiac function in a mouse model of chronic kidney disease. Kidney Int. 96, 1346–1358 (2019).
pubmed: 31668632 pmcid: 6875640 doi: 10.1016/j.kint.2019.07.026
Falkner, B., Keith, S. W., Gidding, S. S. & Langman, C. B. Fibroblast growth factor-23 is independently associated with cardiac mass in African-American adolescent males. J. Am. Soc. Hypertens. 11, 480–487 (2017).
pubmed: 28456498 pmcid: 5550349 doi: 10.1016/j.jash.2017.04.001
Agarwal, I. et al. Fibroblast growth factor-23 and cardiac structure and function. J. Am. Heart Assoc. 3, e000584 (2014).
pubmed: 24525546 pmcid: 3959672 doi: 10.1161/JAHA.113.000584
Akhabue, E. et al. Fibroblast growth factor-23 and subclinical markers of cardiac dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. Heart J. 245, 10–18 (2022).
pubmed: 34861237 doi: 10.1016/j.ahj.2021.11.009
Patel, R. B. et al. Fibroblast growth factor 23 and long-term cardiac function: the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Imaging 13, e011925 (2020).
pubmed: 33161733 pmcid: 7665116 doi: 10.1161/CIRCIMAGING.120.011925
Mirza, M. A., Larsson, A., Melhus, H., Lind, L. & Larsson, T. E. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207, 546–551 (2009).
pubmed: 19524924 doi: 10.1016/j.atherosclerosis.2009.05.013
Jovanovich, A. et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community-dwelling older adults. Atherosclerosis 231, 114–119 (2013).
pubmed: 24125420 doi: 10.1016/j.atherosclerosis.2013.09.002
Gutierrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).
pubmed: 19414634 pmcid: 2740903 doi: 10.1161/CIRCULATIONAHA.108.844506
Mitsnefes, M. M. et al. FGF23 and left ventricular hypertrophy in children with CKD. Clin. J. Am. Soc. Nephrol. 13, 45–52 (2018).
pubmed: 29025789 doi: 10.2215/CJN.02110217
Negishi, K. et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ. J. 74, 2734–2740 (2010).
pubmed: 21041973 doi: 10.1253/circj.CJ-10-0355
Leifheit-Nestler, M. et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transpl. 31, 1088–1099 (2016).
doi: 10.1093/ndt/gfv421
Henry, A. et al. Therapeutic targets for heart failure identified using proteomics and Mendelian randomization. Circulation 145, 1205–1217 (2022).
pubmed: 35300523 pmcid: 9010023 doi: 10.1161/CIRCULATIONAHA.121.056663
Ix, J. H. et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 60, 200–207 (2012).
pubmed: 22703926 pmcid: 3396791 doi: 10.1016/j.jacc.2012.03.040
Kestenbaum, B. et al. Fibroblast growth factor-23 and cardiovascular disease in the general population: the multi-ethnic study of atherosclerosis. Circ. Heart Fail. 7, 409–417 (2014).
pubmed: 24668259 pmcid: 4031265 doi: 10.1161/CIRCHEARTFAILURE.113.000952
Lutsey, P. L. et al. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J. Am. Heart Assoc. 3, e000936 (2014).
pubmed: 24922628 pmcid: 4309096 doi: 10.1161/JAHA.114.000936
Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).
pubmed: 24158986 doi: 10.1681/ASN.2013050465
Binnenmars, S. H. et al. Fibroblast growth factor 23 and risk of new onset heart failure with preserved or reduced ejection fraction: the PREVEND study. J. Am. Heart Assoc. 11, e024952 (2022).
pubmed: 35876420 pmcid: 9375507 doi: 10.1161/JAHA.121.024952
Paul, S. et al. Fibroblast growth factor 23 and incident cardiovascular disease and mortality in middle-aged adults. J. Am. Heart Assoc. 10, e020196 (2021).
pubmed: 34387090 pmcid: 8475041 doi: 10.1161/JAHA.120.020196
Janus, S. E. et al. Multi-variable biomarker approach in identifying incident heart failure in chronic kidney disease: results from the Chronic Renal Insufficiency Cohort study. Eur. J. Heart Fail. 24, 988–995 (2022).
pubmed: 35587997 doi: 10.1002/ejhf.2543
Ghuman, J. et al. Fibroblast growth factor 23 and exercise capacity in heart failure with preserved ejection fraction. J. Card. Fail. 27, 309–317 (2021).
pubmed: 33035687 doi: 10.1016/j.cardfail.2020.09.477
Cornelissen, A. et al. Intact fibroblast growth factor 23 levels and outcome prediction in patients with acute heart failure. Sci. Rep. 11, 15507 (2021).
pubmed: 34330955 pmcid: 8324826 doi: 10.1038/s41598-021-94780-7
Koller, L. et al. Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 8, 1059–1067 (2015).
pubmed: 26273098 doi: 10.1161/CIRCHEARTFAILURE.115.002341
Dorr, K. et al. Randomized trial of etelcalcetide for cardiac hypertrophy in hemodialysis. Circ. Res. 128, 1616–1625 (2021).
pubmed: 33825489 doi: 10.1161/CIRCRESAHA.120.318556
Marthi, A. et al. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J. Am. Soc. Nephrol. 29, 2015–2027 (2018).
pubmed: 29764921 pmcid: 6050929 doi: 10.1681/ASN.2017121334
Carpenter, T. O. et al. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 378, 1987–1998 (2018).
pubmed: 29791829 doi: 10.1056/NEJMoa1714641
Takashi, Y. et al. Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy. Endocr. Res. 42, 132–137 (2017).
pubmed: 27754732 doi: 10.1080/07435800.2016.1242604
Hernandez-Frias, O. et al. Risk of cardiovascular involvement in pediatric patients with X-linked hypophosphatemia. Pediatr. Nephrol. 34, 1077–1086 (2019).
pubmed: 30607568 doi: 10.1007/s00467-018-4180-3
Nehgme, R., Fahey, J. T., Smith, C. & Carpenter, T. O. Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 82, 2450–2454 (1997).
pubmed: 9253316 doi: 10.1210/jcem.82.8.4181
Carpenter, T. O. et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J. Clin. Endocrinol. Metab. 95, E352–E357 (2010).
pubmed: 20685863 pmcid: 2968736 doi: 10.1210/jc.2010-0589
Liang, Y., Luo, S., Schooling, C. M. & Au Yeung, S. L. Genetically predicted fibroblast growth factor 23 and major cardiovascular diseases, their risk factors, kidney function, and longevity: a two-sample Mendelian randomization study. Front. Genet. 12, 699455 (2021).
pubmed: 34367258 pmcid: 8343174 doi: 10.3389/fgene.2021.699455
Akwo, E. et al. Association of genetically predicted fibroblast growth factor-23 with heart failure: a Mendelian randomization study. Clin. J. Am. Soc. Nephrol. 17, 1183–1193 (2022).
pubmed: 35902130 pmcid: 9435988 doi: 10.2215/CJN.00960122
Xie, J., Yoon, J., An, S. W., Kuro-o, M. & Huang, C. L. Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J. Am. Soc. Nephrol. 26, 1150–1160 (2015).
pubmed: 25475745 doi: 10.1681/ASN.2014040325
Yang, K. et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J. Am. Soc. Nephrol. 26, 2434–2446 (2015).
pubmed: 25804281 pmcid: 4587686 doi: 10.1681/ASN.2014060543
Hu, M. C. et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 91, 1104–1114 (2017).
pubmed: 28131398 pmcid: 5592833 doi: 10.1016/j.kint.2016.10.034
Navarro-Garcia, J. A. et al. Enhanced klotho availability protects against cardiac dysfunction induced by uraemic cardiomyopathy by regulating Ca
pubmed: 32830863 pmcid: 7520447 doi: 10.1111/bph.15235
Zhu, H., Gao, Y., Zhu, S., Cui, Q. & Du, J. Klotho improves cardiac function by suppressing reactive oxygen species (ROS) mediated apoptosis by modulating Mapks/Nrf2 signaling in doxorubicin-induced cardiotoxicity. Med. Sci. Monit. 23, 5283–5293 (2017).
pubmed: 29107939 pmcid: 5687120 doi: 10.12659/MSM.907449
Xiao, Z. et al. FGF23 expression is stimulated in transgenic α-Klotho longevity mouse model. JCI Insight 4, e132820 (2019).
pubmed: 31801907 pmcid: 6962016 doi: 10.1172/jci.insight.132820
Guo, Y. et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 238–251 (2018).
pubmed: 28982613 doi: 10.1016/j.bbadis.2017.09.029
Liu, Q. et al. The axis of local cardiac endogenous klotho-TGF-β1-Wnt signaling mediates cardiac fibrosis in human. J. Mol. Cell Cardiol. 136, 113–124 (2019).
pubmed: 31520610 doi: 10.1016/j.yjmcc.2019.09.004
Xie, J. et al. Cardioprotection by klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 3, 1238 (2012).
pubmed: 23212367 doi: 10.1038/ncomms2240
Kuwahara, K. et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114–3126 (2006).
pubmed: 17099778 pmcid: 1635163 doi: 10.1172/JCI27702
Lorenz, K., Schmitt, J. P., Schmitteckert, E. M. & Lohse, M. J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75–83 (2009).
pubmed: 19060905 doi: 10.1038/nm.1893
Bueno, O. F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).
pubmed: 11101507 pmcid: 305855 doi: 10.1093/emboj/19.23.6341
Purcell, N. H. et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc. Natl Acad. Sci. USA 104, 14074–14079 (2007).
pubmed: 17709754 pmcid: 1955824 doi: 10.1073/pnas.0610906104
Harris, I. S. et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 110, 718–723 (2004).
pubmed: 15289381 doi: 10.1161/01.CIR.0000138190.50127.6A
Sun, Y. et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138, 2247–2262 (2018).
pubmed: 29853517 pmcid: 6274625 doi: 10.1161/CIRCULATIONAHA.117.032821
Kim, H. R. et al. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 61, 899–909 (2013).
pubmed: 23540260 doi: 10.1053/j.ajkd.2013.01.024
Tanaka, S., Fujita, S., Kizawa, S., Morita, H. & Ishizaka, N. Association between FGF23, α-Klotho, and cardiac abnormalities among patients with various chronic kidney disease stages. PLoS ONE 11, e0156860 (2016).
pubmed: 27400031 pmcid: 4939955 doi: 10.1371/journal.pone.0156860
Taneike, M. et al. Alpha-Klotho is a novel predictor of treatment responsiveness in patients with heart failure. Sci. Rep. 11, 2058 (2021).
pubmed: 33479413 pmcid: 7820312 doi: 10.1038/s41598-021-81517-9
Bergmark, B. A. et al. Klotho, fibroblast growth factor-23, and the renin-angiotensin system – an analysis from the PEACE trial. Eur. J. Heart Fail. 21, 462–470 (2019).
pubmed: 30773798 doi: 10.1002/ejhf.1424
Shibata, K. et al. Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS ONE 8, e73184 (2013).
pubmed: 24039882 pmcid: 3767778 doi: 10.1371/journal.pone.0073184
Buiten, M. S. et al. Soluble klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrol. 15, 197 (2014).
pubmed: 25495997 pmcid: 4293085 doi: 10.1186/1471-2369-15-197
Sellier, A. B. et al. FGFR4 and klotho polymorphisms are not associated with cardiovascular outcomes in chronic kidney disease. Am. J. Nephrol. 52, 808–816 (2021).
pubmed: 34673637 doi: 10.1159/000519274
Sun, X., Chen, L., He, Y. & Zheng, L. Circulating α-Klotho levels in relation to cardiovascular diseases: a Mendelian randomization study. Front. Endocrinol. 13, 842846 (2022).
doi: 10.3389/fendo.2022.842846
Zhu, X. et al. Renal function mediates the association between klotho and congestive heart failure among middle-aged and older individuals. Front. Cardiovasc. Med. 9, 802287 (2022).
pubmed: 35509269 pmcid: 9058082 doi: 10.3389/fcvm.2022.802287
London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transpl. 18, 1731–1740 (2003).
doi: 10.1093/ndt/gfg414
Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).
pubmed: 11009570 doi: 10.1161/01.RES.87.7.e10
Silswal, N. et al. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am. J. Physiol. Endocrinol. Metab. 307, E426–E436 (2014).
pubmed: 25053401 pmcid: 4154070 doi: 10.1152/ajpendo.00264.2014
Richter, B., Haller, J., Haffner, D. & Leifheit-Nestler, M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflug. Arch. 468, 1621–1635 (2016).
doi: 10.1007/s00424-016-1858-x
Chung, C. P. et al. α-Klotho expression determines nitric oxide synthesis in response to FGF-23 in human aortic endothelial cells. PLoS ONE 12, e0176817 (2017).
pubmed: 28463984 pmcid: 5413063 doi: 10.1371/journal.pone.0176817
Verkaik, M. et al. FGF23 impairs peripheral microvascular function in renal failure. Am. J. Physiol. Heart Circ. Physiol. 315, H1414–H1424 (2018).
pubmed: 30028196 doi: 10.1152/ajpheart.00272.2018
Six, I. et al. Direct, acute effects of klotho and FGF23 on vascular smooth muscle and endothelium. PLoS ONE 9, e93423 (2014).
pubmed: 24695641 pmcid: 3973676 doi: 10.1371/journal.pone.0093423
Lindberg, K. et al. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS ONE 8, e60658 (2013).
pubmed: 23577141 pmcid: 3618102 doi: 10.1371/journal.pone.0060658
Shalhoub, V. et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest. 122, 2543–2553 (2012).
pubmed: 22728934 pmcid: 3386816 doi: 10.1172/JCI61405
Sarmento-Dias, M. et al. Fibroblast growth factor 23 is associated with left ventricular hypertrophy, not with uremic vasculopathy in peritoneal dialysis patients. Clin. Nephrol. 85, 135–141 (2016).
pubmed: 26833300 doi: 10.5414/CN108716
Panwar, B. et al. Association of fibroblast growth factor 23 with risk of incident coronary heart disease in community-living adults. JAMA Cardiol. 3, 318–325 (2018).
pubmed: 29516098 pmcid: 5875372 doi: 10.1001/jamacardio.2018.0139
Yokomoto-Umakoshi, M. et al. Investigating the causal effect of fibroblast growth factor 23 on osteoporosis and cardiometabolic disorders: a Mendelian randomization study. Bone 143, 115777 (2021).
pubmed: 33253933 doi: 10.1016/j.bone.2020.115777
Hum, J. M. et al. Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble klotho. J. Am. Soc. Nephrol. 28, 1162–1174 (2017).
pubmed: 27837149 doi: 10.1681/ASN.2015111266
Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int. 75, 1166–1172 (2009).
pubmed: 19225558 pmcid: 3143194 doi: 10.1038/ki.2009.24
Cheng, L., Zhang, L., Yang, J. & Hao, L. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upregulating klotho. Exp. Ther. Med. 13, 467–474 (2017).
pubmed: 28352317 doi: 10.3892/etm.2016.3996
Chang, J. R. et al. Intermedin
pubmed: 26880455 doi: 10.1016/j.kint.2015.12.029
Zhao, Y. et al. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via klotho upregulation. Kidney Int. 88, 711–721 (2015).
pubmed: 26061549 doi: 10.1038/ki.2015.160
Lau, W. L. et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 82, 1261–1270 (2012).
pubmed: 22932118 pmcid: 3511664 doi: 10.1038/ki.2012.322
Nagai, R. et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol. Life Sci. 57, 738–746 (2000).
pubmed: 10892340 doi: 10.1007/s000180050038
Maltese, G. et al. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J. Cell Mol. Med. 21, 621–627 (2017).
pubmed: 27696667 doi: 10.1111/jcmm.12996
Kusaba, T. et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca
pubmed: 20966350 pmcid: 2984167 doi: 10.1073/pnas.1008544107
Kawarazaki, W. et al. Salt causes aging-associated hypertension via vascular Wnt5a under klotho deficiency. J. Clin. Invest. 130, 4152–4166 (2020).
pubmed: 32597829 pmcid: 7410076
Cui, W., Leng, B., Liu, W. & Wang, G. Suppression of apoptosis in human umbilical vein endothelial cells (HUVECs) by klotho protein is associated with reduced endoplasmic reticulum oxidative stress and activation of the PI3K/AKT pathway. Med. Sci. Monit. 24, 8489–8499 (2018).
pubmed: 30471224 pmcid: 6270887 doi: 10.12659/MSM.911202
Ikushima, M. et al. Anti-apoptotic and anti-senescence effects of klotho on vascular endothelial cells. Biochem. Biophys. Res. Commun. 339, 827–832 (2006).
pubmed: 16325773 doi: 10.1016/j.bbrc.2005.11.094
Yang, K. et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 129, 2667–2679 (2017).
pubmed: 28264799 doi: 10.1182/blood-2016-10-744060
Mencke, R. et al. Membrane-bound klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc. Res. 108, 220–231 (2015).
pubmed: 26116633 doi: 10.1093/cvr/cvv187
Savvoulidis, P. et al. Calcification of coronary arteries and aortic valve and circulating a-klotho levels in patients with chronic kidney disease. J. Thorac. Dis. 12, 431–437 (2020).
pubmed: 32274109 pmcid: 7139066 doi: 10.21037/jtd.2020.01.49
Liu, Q., Yu, L., Yin, X., Ye, J. & Li, S. Correlation between soluble klotho and vascular calcification in chronic kidney disease: a meta-analysis and systematic review. Front. Physiol. 12, 711904 (2021).
pubmed: 34483963 pmcid: 8414804 doi: 10.3389/fphys.2021.711904
Solache-Berrocal, G. et al. CYP24A1 and KL polymorphisms are associated with the extent of vascular calcification but do not improve prediction of cardiovascular events. Nephrol. Dial. Transpl. 36, 2076–2083 (2021).
doi: 10.1093/ndt/gfaa240
Valdivielso, J. M. et al. Association of the rs495392 klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrol. Dial. Transpl. 34, 2079–2088 (2019).
doi: 10.1093/ndt/gfy207
Lee, J. et al. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 22, 442 (2022).
pubmed: 36221064 pmcid: 9552482 doi: 10.1186/s12872-022-02885-2
Alonso, A. et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 123, 2946–2953 (2011).
pubmed: 21646496 pmcid: 3139978 doi: 10.1161/CIRCULATIONAHA.111.020982
Wizemann, V. et al. Atrial fibrillation in hemodialysis patients: clinical features and associations with anticoagulant therapy. Kidney Int. 77, 1098–1106 (2010).
pubmed: 20054291 doi: 10.1038/ki.2009.477
Mehta, R. et al. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the chronic renal insufficiency cohort study. JAMA Cardiol. 1, 548–556 (2016).
pubmed: 27434583 pmcid: 4992989 doi: 10.1001/jamacardio.2016.1445
Chua, W. et al. Quantification of fibroblast growth factor 23 and N-terminal pro-B-type natriuretic peptide to identify patients with atrial fibrillation using a high-throughput platform: a validation study. PLoS Med. 18, e1003405 (2021).
pubmed: 33534825 pmcid: 7857735 doi: 10.1371/journal.pmed.1003405
Mathew, J. S. et al. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 130, 298–307 (2014).
pubmed: 24920722 pmcid: 4108550 doi: 10.1161/CIRCULATIONAHA.113.005499
Chua, W. et al. Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation. Eur. Heart J. 40, 1268–1276 (2019).
pubmed: 30615112 pmcid: 6475521 doi: 10.1093/eurheartj/ehy815
Tan, Z. et al. Relationship between serum growth differentiation factor 15, fibroblast growth factor-23 and risk of atrial fibrillation: a systematic review and meta-analysis. Front. Cardiovasc. Med. 9, 899667 (2022).
pubmed: 35990956 pmcid: 9386045 doi: 10.3389/fcvm.2022.899667
Huang, S. Y. et al. Fibroblast growth factor 23 dysregulates late sodium current and calcium homeostasis with enhanced arrhythmogenesis in pulmonary vein cardiomyocytes. Oncotarget 7, 69231–69242 (2016).
pubmed: 27713141 pmcid: 5342473 doi: 10.18632/oncotarget.12470
Kao, Y. H. et al. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells. Eur. J. Clin. Invest. 44, 795–801 (2014).
pubmed: 24942561 doi: 10.1111/eci.12296
Lu, Y. Y. et al. Fibroblast growth factor 1 reduces pulmonary vein and atrium arrhythmogenesis via modification of oxidative stress and sodium/calcium homeostasis. Front. Cardiovasc. Med. 8, 813589 (2021).
pubmed: 35118146 doi: 10.3389/fcvm.2021.813589
Nowak, A. et al. Prognostic value and link to atrial fibrillation of soluble klotho and FGF23 in hemodialysis patients. PLoS ONE 9, e100688 (2014).
pubmed: 24991914 pmcid: 4084634 doi: 10.1371/journal.pone.0100688
Takeshita, K. et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109, 1776–1782 (2004).
pubmed: 15037532 doi: 10.1161/01.CIR.0000124224.48962.32
Hung, Y. et al. Klotho modulates pro-fibrotic activities in human atrial fibroblasts through inhibition of phospholipase C signaling and suppression of store-operated calcium entry. Biomedicines https://doi.org/10.3390/biomedicines10071574 (2022).
doi: 10.3390/biomedicines10071574 pubmed: 36551964 pmcid: 9687769
Leifheit-Nestler, M. et al. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol. Dial. Transpl. 32, 1493–1503 (2017).
doi: 10.1093/ndt/gfw454
Slavic, S. et al. Genetic ablation of Fgf23 or klotho does not modulate experimental heart hypertrophy induced by pressure overload. Sci. Rep. 7, 11298 (2017).
pubmed: 28900153 pmcid: 5595838 doi: 10.1038/s41598-017-10140-4
Andersen, I. A., Huntley, B. K., Sandberg, S. S., Heublein, D. M. & Burnett, J. C. Jr. Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol. Dial. Transpl. 31, 767–772 (2016).
doi: 10.1093/ndt/gfv398
Poelzl, G. et al. Klotho is upregulated in human cardiomyopathy independently of circulating klotho levels. Sci. Rep. 8, 8429 (2018).
pubmed: 29849175 pmcid: 5976633 doi: 10.1038/s41598-018-26539-6
Corsetti, G. et al. Decreased expression of klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. J. Geriatr. Cardiol. 13, 701–711 (2016).
pubmed: 27781061 pmcid: 5067432
Scialla, J. J. et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 83, 1159–1168 (2013).
pubmed: 23389416 pmcid: 3672330 doi: 10.1038/ki.2013.3
Linefsky, J. P. et al. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: the cardiovascular health study. J. Am. Coll. Cardiol. 58, 291–297 (2011).
pubmed: 21737022 pmcid: 3147295 doi: 10.1016/j.jacc.2010.11.073
Campos-Obando, N. et al. Genetic evidence for a causal role of serum phosphate in coronary artery calcification: the Rotterdam study. J. Am. Heart Assoc. 11, e023024 (2022).
pubmed: 35904204 pmcid: 9375490 doi: 10.1161/JAHA.121.023024
Tentori, F. et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 52, 519–530 (2008).
pubmed: 18514987 doi: 10.1053/j.ajkd.2008.03.020
Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).
pubmed: 9531176 doi: 10.1053/ajkd.1998.v31.pm9531176
Palmer, S. C. et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. J. Am. Med. Assoc. 305, 1119–1127 (2011).
doi: 10.1001/jama.2011.308
Teng, M. et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J. Am. Soc. Nephrol. 16, 1115–1125 (2005).
pubmed: 15728786 doi: 10.1681/ASN.2004070573
Investigators, J. D. et al. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving maintenance hemodialysis: the J-DAVID randomized clinical trial. J. Am. Med. Assoc. 320, 2325–2334 (2018).
doi: 10.1001/jama.2018.17749
Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. J. Am. Med. Assoc. 307, 674–684 (2012).
doi: 10.1001/jama.2012.120
Yoon, J. et al. Physiologic regulation of systemic klotho levels by renal CaSR signaling in response to CaSR ligands and pH
pubmed: 34551996 pmcid: 8638396 doi: 10.1681/ASN.2021020276
Komaba, H. et al. Effects of cinacalcet treatment on serum soluble klotho levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transpl. 27, 1967–1969 (2012).
doi: 10.1093/ndt/gfr645
Investigators, E. T. et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 367, 2482–2494 (2012).
doi: 10.1056/NEJMoa1205624
Wolf, M. et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin. Kidney J. 13, 75–84 (2020).
pubmed: 32082556 doi: 10.1093/ckj/sfz034
Isakova, T. et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J. Am. Soc. Nephrol. 26, 2328–2339 (2015).
pubmed: 25967123 pmcid: 4587706 doi: 10.1681/ASN.2015020117
Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).
pubmed: 15613425 doi: 10.1210/jc.2004-1039
Gutierrez, O. M. et al. Impact of phosphorus-based food additives on bone and mineral metabolism. J. Clin. Endocrinol. Metab. 100, 4264–4271 (2015).
pubmed: 26323022 pmcid: 4702463 doi: 10.1210/jc.2015-2279
Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).
pubmed: 21183586 pmcid: 3052214 doi: 10.2215/CJN.05040610
Chang, Y. M. et al. Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 and hepcidin levels in chronic hemodialysis patients. Clin. Exp. Nephrol. 21, 908–916 (2017).
pubmed: 27928636 doi: 10.1007/s10157-016-1362-9
Block, G. A. et al. Effect of ferric citrate on serum phosphate and fibroblast growth factor 23 among patients with nondialysis-dependent chronic kidney disease: path analyses. Nephrol. Dial. Transpl. 34, 1115–1124 (2019).
doi: 10.1093/ndt/gfy318
Ix, J. H. et al. Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: the COMBINE trial. J. Am. Soc. Nephrol. 30, 1096–1108 (2019).
pubmed: 31085679 pmcid: 6551774 doi: 10.1681/ASN.2018101058
Block, G. A. et al. The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol. Dial. Transpl. 34, 339–346 (2019).
doi: 10.1093/ndt/gfy061
Pergola, P. E., Rosenbaum, D. P., Yang, Y. & Chertow, G. M. A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY). J. Am. Soc. Nephrol. 32, 1465–1473 (2021).
pubmed: 33766811 pmcid: 8259655 doi: 10.1681/ASN.2020101398
Kawabata, C. et al. Changes in fibroblast growth factor 23 and soluble klotho levels after hemodialysis initiation. Kidney Med. 2, 59–67 (2020).
pubmed: 33015612 doi: 10.1016/j.xkme.2019.09.007
Huang, S. H. et al. The kinetics of cystatin C removal by hemodialysis. Am. J. Kidney Dis. 65, 174–175 (2015).
pubmed: 25282341 doi: 10.1053/j.ajkd.2014.08.010
Isakova, T. et al. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 6, 2688–2695 (2011).
pubmed: 21903990 pmcid: 3206004 doi: 10.2215/CJN.04290511
Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).
pubmed: 20844473 doi: 10.1038/ki.2010.313
Liu, Y. et al. Novel regulatory factors and small-molecule inhibitors of FGFR4 in cancer. Front. Pharmacol. 12, 633453 (2021).
pubmed: 33981224 pmcid: 8107720 doi: 10.3389/fphar.2021.633453
Yu, C., Wang, F., Jin, C., Huang, X. & McKeehan, W. L. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem. 280, 17707–17714 (2005).
pubmed: 15750181 doi: 10.1074/jbc.M411771200
Wang, Y. & Sun, Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 54, 810–817 (2009).
pubmed: 19635988 doi: 10.1161/HYPERTENSIONAHA.109.134320
Lin, W. et al. Klotho restoration via acetylation of peroxisome proliferation-activated receptor γ reduces the progression of chronic kidney disease. Kidney Int. 92, 669–679 (2017).
pubmed: 28416226 doi: 10.1016/j.kint.2017.02.023
Zhang, Q., Yin, S., Liu, L., Liu, Z. & Cao, W. Rhein reversal of DNA hypermethylation-associated klotho suppression ameliorates renal fibrosis in mice. Sci. Rep. 6, 34597 (2016).
pubmed: 27703201 pmcid: 5050540 doi: 10.1038/srep34597
Murray, S. L. & Wolf, M. Pivoting from PTH to FGF23 to mend breaking hearts on dialysis. Circ. Res. 128, 1626–1628 (2021).
pubmed: 34043423 doi: 10.1161/CIRCRESAHA.121.319306
Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).
pubmed: 11565518 doi: 10.1056/NEJMoa011161
Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).
pubmed: 33264825 doi: 10.1056/NEJMoa2025845
The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).
doi: 10.1056/NEJMoa2204233

Auteurs

Daniel Edmonston (D)

Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.

Alexander Grabner (A)

Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.

Myles Wolf (M)

Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. myles.wolf@duke.edu.
Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA. myles.wolf@duke.edu.

Classifications MeSH