Skeleton Segmentation on Bone Scintigraphy for BSI Computation.

Deeplabv3 + Double U-Net Mask R-CNN bone scintigraphy bone segmentation

Journal

Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402

Informations de publication

Date de publication:
06 Jul 2023
Historique:
received: 19 06 2023
revised: 02 07 2023
accepted: 05 07 2023
medline: 14 7 2023
pubmed: 14 7 2023
entrez: 14 7 2023
Statut: epublish

Résumé

Bone Scan Index (BSI) is an image biomarker for quantifying bone metastasis of cancers. To compute BSI, not only the hotspots (metastasis) but also the bones have to be segmented. Most related research focus on binary classification in bone scintigraphy: having metastasis or none. Rare studies focus on pixel-wise segmentation. This study compares three advanced convolutional neural network (CNN) based models to explore bone segmentation on a dataset in-house. The best model is Mask R-CNN, which reaches the precision, sensitivity, and F1-score: 0.93, 0.87, 0.90 for prostate cancer patients and 0.92, 0.86, and 0.88 for breast cancer patients, respectively. The results are the average of 10-fold cross-validation, which reveals the reliability of clinical use on bone segmentation.

Identifiants

pubmed: 37443695
pii: diagnostics13132302
doi: 10.3390/diagnostics13132302
pmc: PMC10340357
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : National Science and Technology Council (NSTC), Taiwan
ID : MOST 111-2314-B-039-040

Références

JAMA Oncol. 2019 Feb 1;5(2):270-271
pubmed: 30543364
J Nucl Med. 2016 Jan;57(1):41-5
pubmed: 26315832
Ann Nucl Med. 2015 Feb;29(2):138-48
pubmed: 25326907
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397
pubmed: 29994331
BMC Med Imaging. 2018 May 4;18(1):8
pubmed: 29728144
Eur Urol. 2012 Jul;62(1):78-84
pubmed: 22306323
Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6243s-6249s
pubmed: 17062708
Clin Imaging. 2021 Oct;78:14-18
pubmed: 33714920
Eur Urol Oncol. 2021 Feb;4(1):49-55
pubmed: 31186177
J Clin Oncol. 2012 Feb 10;30(5):519-24
pubmed: 22231045
World J Radiol. 2015 Aug 28;7(8):202-11
pubmed: 26339464
Semin Nucl Med. 2012 Jan;42(1):11-26
pubmed: 22117809
Cancers (Basel). 2020 Sep 17;12(9):
pubmed: 32957650
Diagnostics (Basel). 2021 Mar 15;11(3):
pubmed: 33803921
Ann Nucl Med. 2015 Oct;29(8):659-65
pubmed: 26033528
Bioinformatics. 2023 Jan 1;39(1):
pubmed: 36416135
Int J Comput Assist Radiol Surg. 2020 Mar;15(3):401
pubmed: 32008220
Clin Cancer Res. 1998 Jul;4(7):1765-72
pubmed: 9676853
Int J Urol. 2017 Sep;24(9):668-673
pubmed: 28556293
Cancer Treat Rev. 2001 Jun;27(3):165-76
pubmed: 11417967
J Nucl Med. 2016 Dec;57(12):1865-1871
pubmed: 27445289
JAMA Oncol. 2018 Jul 1;4(7):944-951
pubmed: 29799999

Auteurs

Po-Nien Yu (PN)

Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan.

Yung-Chi Lai (YC)

Department of Nuclear Medicine, Feng Yuan Hospital Ministry of Health and Welfare, Taichung 420, Taiwan.

Yi-You Chen (YY)

Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan.

Da-Chuan Cheng (DC)

Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan.
Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 404, Taiwan.

Classifications MeSH