Ultrasonic Transformation of Antibiotic Molecules into a Selective Chemotherapeutic Nanodrug.
anticancer
doxycycline
intracellular trafficking
nanoparticles
ultrasound
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
22 Jun 2023
22 Jun 2023
Historique:
received:
20
05
2023
revised:
15
06
2023
accepted:
20
06
2023
medline:
17
7
2023
pubmed:
14
7
2023
entrez:
14
7
2023
Statut:
epublish
Résumé
Ultrasound-based engineering of carrier-free nanodrugs by supramolecular self-assembly has recently emerged as an innovative and environmentally friendly synthetic approach. By applying high-frequency sound waves (490 kHz) in aqueous solutions, the transformation of small chemotherapeutic and antibiotic drug molecules into carrier-free nanodrugs with anticancer and antimicrobial activities was recently achieved. The transformation of the antibiotic drug molecules, i.e., doxycycline, into stable nanodrugs (~130 nm) with selective anticancer activity was achieved without requiring organic solvents, chemical agents, or surfactants. The obtained nanodrug exhibited reactive oxygen species (ROS)-mediated cytotoxicity on human breast cancer (MDA-MB 231 cells) but a negligible antiproliferative effect on healthy fibroblast cells. Imaging by super-resolution microscopy (STORM) provided insights into the intracellular trafficking and endosomal escape of the nanodrugs. Overall, these findings suggest that small antibiotic drugs can be transformed into chemotherapeutic nanodrugs with high selectivity against cancer cells.
Identifiants
pubmed: 37446588
pii: molecules28134927
doi: 10.3390/molecules28134927
pmc: PMC10343459
pii:
doi:
Substances chimiques
Anti-Bacterial Agents
0
Antineoplastic Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Am Chem Soc. 2010 Aug 18;132(32):11306-13
pubmed: 20698697
Biotechnol Bioeng. 2000 Jan 20;67(2):217-23
pubmed: 10592519
Traffic. 2009 Oct;10(10):1488-501
pubmed: 19682329
Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12302-12306
pubmed: 28834049
Cancer Cell. 2006 Sep;10(3):175-6
pubmed: 16959608
Cancers (Basel). 2022 Jun 22;14(13):
pubmed: 35804828
Trends Cell Biol. 2013 Dec;23(12):612-9
pubmed: 24060597
Biomed Pharmacother. 2013 Jul;67(6):459-67
pubmed: 23583191
Eur J Pharmacol. 2022 Feb 5;916:174593
pubmed: 34973952
Clin Med Insights Pathol. 2015 Dec 21;8:23-31
pubmed: 26740749
Ther Drug Monit. 1982;4(2):115-35
pubmed: 7048645
Ultrason Sonochem. 2022 May;86:106029
pubmed: 35561593
Annu Rev Public Health. 1996;17:47-67
pubmed: 8724215
Nanomaterials (Basel). 2020 Sep 08;10(9):
pubmed: 32911613
Anticancer Res. 2009 Oct;29(10):3995-4003
pubmed: 19846942
Molecules. 2020 Jul 15;25(14):
pubmed: 32679837
Med Sci Monit. 2017 Aug 26;23:4117-4125
pubmed: 28842551
Mater Sci Eng C Mater Biol Appl. 2018 Feb 1;83:25-34
pubmed: 29208285
Clin Immunol. 2006 Nov;121(2):159-76
pubmed: 16920030
Nanomaterials (Basel). 2022 Mar 03;12(5):
pubmed: 35269343
Oncogene. 2006 Sep 25;25(43):5837-45
pubmed: 16998498
ACS Macro Lett. 2019 Oct 15;8(10):1285-1290
pubmed: 35651170
Adv Mater. 2022 Apr;34(13):e2107964
pubmed: 35100658
J Biomater Sci Polym Ed. 2013;24(4):398-416
pubmed: 23565683
Nat Genet. 2002 May;31(1):55-9
pubmed: 11967536
Curr Microbiol. 2020 Sep;77(9):2287-2299
pubmed: 32535649
Cancers (Basel). 2019 Jul 22;11(7):
pubmed: 31336648
Langmuir. 2009 Mar 3;25(5):2593-5
pubmed: 19239188
Ultrason Sonochem. 2004 Apr;11(2):47-55
pubmed: 15030779
Eur J Cancer. 2006 Apr;42(6):691-703
pubmed: 16531042
Bioorg Med Chem Lett. 2019 Jul 1;29(13):1549-1554
pubmed: 31054863