Research on Heterogeneous Traveler Travel Mode Choices with Differences under a Mixed Traffic Environment.
heterogeneous travelers
multi-mode choice
shared automated vehicle
travel utility
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
02 Jul 2023
02 Jul 2023
Historique:
received:
24
05
2023
revised:
20
06
2023
accepted:
27
06
2023
medline:
17
7
2023
pubmed:
14
7
2023
entrez:
14
7
2023
Statut:
epublish
Résumé
Autonomous vehicles (AVs) have been made possible by advances in sensing and computing technologies. However, the high cost of AVs makes privatization take longer. Therefore, companies with autonomous vehicles can develop shared autonomous vehicle (SAV) projects. AVs with a high level of automation require high upgrade and use costs. In order to meet the needs of more customers and reduce the investment cost of the company, SAVs with different levels of automation may coexist for a long time. Faced with multiple travel modes (autonomous cars with different levels of automation, private cars, and buses), travelers' travel mode choices are worth studying. To further differentiate the types of travelers, this paper defines high-income travelers and low-income travelers. The difference between these two types of travelers is whether they have a private car. The differences in time value and willingness to pay of the two types of travelers are considered. Based on the above considerations, this paper establishes a multi-modal selection model with the goal of maximizing the total utility of all travelers and uses the imperial competition algorithm to solve it. The results show that low-income travelers are more likely to choose buses and autonomous vehicles with lower levels of automation, while high-income travelers tend to choose higher levels of automation due to their high value of travel time.
Identifiants
pubmed: 37447940
pii: s23136091
doi: 10.3390/s23136091
pmc: PMC10347240
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : U1811463 and 71961137008
Organisme : The State Key Laboratory of Structural Analysis for Industrial Equipment
ID : S18307