Combining biomechanical stimulation and chronobiology: a novel approach for augmented chondrogenesis?

biomechanical stimuli cartilage regeneration chondrochronology chondrogenesis chondrotherapy circadian clock osteoarthritis

Journal

Frontiers in bioengineering and biotechnology
ISSN: 2296-4185
Titre abrégé: Front Bioeng Biotechnol
Pays: Switzerland
ID NLM: 101632513

Informations de publication

Date de publication:
2023
Historique:
received: 31 05 2023
accepted: 20 06 2023
medline: 17 7 2023
pubmed: 17 7 2023
entrez: 17 7 2023
Statut: epublish

Résumé

The unique structure and composition of articular cartilage is critical for its physiological function. However, this architecture may get disrupted by degeneration or trauma. Due to the low intrinsic regeneration properties of the tissue, the healing response is generally poor. Low-grade inflammation in patients with osteoarthritis advances cartilage degradation, resulting in pain, immobility, and reduced quality of life. Generating neocartilage using advanced tissue engineering approaches may address these limitations. The biocompatible microenvironment that is suitable for cartilage regeneration may not only rely on cells and scaffolds, but also on the spatial and temporal features of biomechanics. Cell-autonomous biological clocks that generate circadian rhythms in chondrocytes are generally accepted to be indispensable for normal cartilage homeostasis. While the molecular details of the circadian clockwork are increasingly well understood at the cellular level, the mechanisms that enable clock entrainment by biomechanical signals, which are highly relevant in cartilage, are still largely unknown. This narrative review outlines the role of the biomechanical microenvironment to advance cartilage tissue engineering via entraining the molecular circadian clockwork, and highlights how application of this concept may enhance the development and successful translation of biomechanically relevant tissue engineering interventions.

Identifiants

pubmed: 37456723
doi: 10.3389/fbioe.2023.1232465
pii: 1232465
pmc: PMC10349586
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

1232465

Informations de copyright

Copyright © 2023 Vágó, Takács, Kovács, Hajdú, van der Veen and Matta.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Clin Orthop Relat Res. 2011 Oct;469(10):2764-72
pubmed: 21344272
Ann Rheum Dis. 2002 Dec;61(12):1075-80
pubmed: 12429538
Osteoarthritis Cartilage. 2018 Nov;26(11):1518-1530
pubmed: 30031924
J Orthop Sports Phys Ther. 2022 Apr;52(4):207-216
pubmed: 35442752
Mod Rheumatol. 2006;16(3):131-6
pubmed: 16767550
Arthritis Rheum. 2009 Mar;60(3):771-9
pubmed: 19248115
In Vitro Model. 2022;1(6):405-412
pubmed: 36570670
Int Immunopharmacol. 2023 Feb;115:109692
pubmed: 36628892
Lancet. 2021 Dec 19;396(10267):2006-2017
pubmed: 33275908
Osteoarthritis Cartilage. 2002 Apr;10(4):297-307
pubmed: 11950253
Sci Rep. 2017 Jun 16;7(1):3708
pubmed: 28623370
Pain Pract. 2023 Jan;23(1):94-109
pubmed: 35869813
J Clin Invest. 2016 Jan;126(1):365-76
pubmed: 26657859
Cartilage. 2021 Dec;13(2_suppl):53S-67S
pubmed: 32059614
Nat Rev Mol Cell Biol. 2017 Dec;18(12):728-742
pubmed: 29115301
Stem Cell Res Ther. 2013 Jul 01;4(4):61
pubmed: 23809493
Curr Rheumatol Rep. 2014 Oct;16(10):451
pubmed: 25182679
Osteoarthritis Cartilage. 2023 May 23;:
pubmed: 37230460
Cell Mol Life Sci. 2016 Mar;73(6):1173-94
pubmed: 26811234
Acta Biomater. 2020 Jul 15;111:267-278
pubmed: 32428685
Science. 2012 Nov 16;338(6109):917-21
pubmed: 23161992
J Biol Chem. 2012 Oct 19;287(43):36081-95
pubmed: 22936800
Ann Rheum Dis. 2018 Mar;77(3):423
pubmed: 29273645
Nat Rev Immunol. 2019 Dec;19(12):723-733
pubmed: 31417198
Theranostics. 2022 May 13;12(8):3963-3976
pubmed: 35664072
Osteoarthritis Cartilage. 2017 Jun;25(6):943-951
pubmed: 27884645
Osteoarthritis Cartilage. 2003 Mar;11(3):187-97
pubmed: 12623290
Biomaterials. 2016 Aug;98:1-22
pubmed: 27177218
Ann N Y Acad Sci. 2006 Apr;1068:498-512
pubmed: 16831947
Channels (Austin). 2021 Dec;15(1):339-359
pubmed: 33775217
J Orthop Res. 2018 Feb;36(2):721-729
pubmed: 29044742
Gels. 2023 Mar 15;9(3):
pubmed: 36975679
Cell Death Dis. 2021 May 27;12(6):551
pubmed: 34045450
J Biol Rhythms. 2016 Oct;31(5):415-27
pubmed: 27558096
J Cell Physiol. 2007 Nov;213(2):341-7
pubmed: 17620285
Matrix Biol. 2014 Oct;39:11-6
pubmed: 25169886
Int J Mol Sci. 2022 Dec 21;24(1):
pubmed: 36613502
J Orthop Res. 2018 Jan;36(1):52-63
pubmed: 28763118
RMD Open. 2021 Jun;7(2):
pubmed: 34103406
Biomed Pharmacother. 2019 Sep;117:109146
pubmed: 31387186
Am J Physiol Cell Physiol. 2022 Jul 1;323(1):C236-C247
pubmed: 35649254
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16219-24
pubmed: 25349387
Int J Mol Sci. 2019 Jan 15;20(2):
pubmed: 30650649
Osteoarthritis Cartilage. 2023 Jul;31(7):876-883
pubmed: 36963607
J Biol Rhythms. 2021 Dec;36(6):503-531
pubmed: 34547953
Stem Cells Int. 2017;2017:2057168
pubmed: 29201058
Eur J Oral Sci. 2017 Oct;125(5):315-337
pubmed: 28833567
Front Mol Neurosci. 2021 May 11;14:666673
pubmed: 34045944
Life Sci. 2022 Nov 15;309:121043
pubmed: 36206835
J Pineal Res. 2022 Nov;73(4):e12827
pubmed: 36030553
Nature. 1964 May 30;202:906-7
pubmed: 14190091
J Orthop Res. 2000 Jan;18(1):78-86
pubmed: 10716282
Nat Commun. 2017 Jan 30;8:14287
pubmed: 28134247
Int J Mol Sci. 2023 Feb 09;24(4):
pubmed: 36834862
Rheumatology (Oxford). 2018 May 1;57(suppl_4):iv43-iv50
pubmed: 29267879
Joint Bone Spine. 2019 Jan;86(1):29-35
pubmed: 29452304
Exp Mol Med. 2013 Nov 15;45:e57
pubmed: 24232256
Chronobiol Int. 2017;34(8):1067-1082
pubmed: 28704069
Arthritis Rheumatol. 2015 May;67(5):1286-94
pubmed: 25604429
Cell Signal. 2014 Mar;26(3):468-82
pubmed: 24333667
Int J Oral Sci. 2017 Mar;9(1):43-52
pubmed: 28282029
Science. 1993 May 14;260(5110):920-6
pubmed: 8493529
Tissue Eng Part B Rev. 2009 Mar;15(1):43-53
pubmed: 19196119
Cell Signal. 2021 Nov;87:110143
pubmed: 34481895
Int J Mol Sci. 2021 Sep 07;22(18):
pubmed: 34575847
J Cell Biol. 2023 Sep 4;222(9):
pubmed: 37378613
F1000Res. 2020 Feb 18;9:
pubmed: 32117568
Front Med (Lausanne). 2021 Jan 18;7:607186
pubmed: 33537330
Nat Rev Genet. 2017 Mar;18(3):164-179
pubmed: 27990019
Stem Cells Dev. 2022 Aug;31(15-16):460-487
pubmed: 35615879
J Tissue Eng Regen Med. 2018 Jan;12(1):e7-e22
pubmed: 28374578
Ann Rheum Dis. 1997 Apr;56(4):255-61
pubmed: 9165998
Matrix Biol. 2021 Feb;96:1-17
pubmed: 33246102
Sci Transl Med. 2017 Nov 8;9(415):
pubmed: 29118260
Arthritis Rheum. 2013 Sep;65(9):2334-45
pubmed: 23896777
Annu Rev Physiol. 2010;72:517-49
pubmed: 20148687
Am J Pathol. 2016 Feb;186(2):410-8
pubmed: 26683663
J Cell Sci. 1998 Jul 30;111 ( Pt 14):2067-76
pubmed: 9645953
Science. 2000 Sep 29;289(5488):2344-7
pubmed: 11009419
J Exp Orthop. 2018 May 22;5(1):14
pubmed: 29790042
J Biol Chem. 2006 Aug 18;281(33):23632-42
pubmed: 16777848
J Cell Sci. 2014 Jul 15;127(Pt 14):3005-15
pubmed: 24963133
Int J Mol Sci. 2021 Dec 18;22(24):
pubmed: 34948394
Curr Top Membr. 2017;79:263-273
pubmed: 28728820
Biomed Res Int. 2017;2017:8074178
pubmed: 28852649
J Cell Mol Med. 2020 May;24(10):5408-5419
pubmed: 32237113
Biogerontology. 2015 Apr;16(2):209-19
pubmed: 25078075

Auteurs

Judit Vágó (J)

Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary.

Roland Takács (R)

Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary.

Patrik Kovács (P)

Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary.

Tibor Hajdú (T)

Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary.

Daan R van der Veen (DR)

Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.

Csaba Matta (C)

Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary.

Classifications MeSH