Statistical Optimization and Partial Characterization of Xylanases Produced by Streptomyces sp. S1M3I Using Olive Pomace as a Fermentation Substrate.
Actinobacteria,·Xylanase
Characterization
Olive pomace
Optimization
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
17 Jul 2023
17 Jul 2023
Historique:
accepted:
04
07
2023
medline:
17
7
2023
pubmed:
17
7
2023
entrez:
17
7
2023
Statut:
aheadofprint
Résumé
Xylanase production by Streptomyces sp. S1M3I was optimized by response surface methodology (RSM), followed by a partial characterization of these enzymes. Olive pomace was used as a substrate for growing Streptomyces sp. S1M3I in submerged fermentation. Effects of incubation time, pH, temperature, carbon source, nitrogen source, and inoculum size on xylanase production were studied, through the one-factor-at-a-time method. Then, a 3
Identifiants
pubmed: 37458941
doi: 10.1007/s12010-023-04660-1
pii: 10.1007/s12010-023-04660-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Thrash, J.C., & Coates, J.D. (2010). Phylum XVII, Acidobacteria phyl. nov. Bergey's Manual of Systematic Bacteriology. 725‑735. https://doi.org/10.1007/978-0-387-68572-4_6
Boroujeni, M., Das, A., Prachanthi, K., et al. (2012). Enzymatic screening and rendom amplified polymorphic DNA fingerpinting of soil streptomycetes isolated from Wayanad District in Kerala. Indian Journal of Biological Sciences, 12, 1–8. https://doi.org/10.3923/jbs.2012.43.50
doi: 10.3923/jbs.2012.43.50
Aparicio, J., Zoleica, M., Solá, S., Susana, C., et al. (2015). Safety versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr (VI) and lindane. Ecotoxicology and Environmental Safety, 116, 34–39. https://doi.org/10.1016/j.ecoenv.2015.02.036
doi: 10.1016/j.ecoenv.2015.02.036
pubmed: 25749405
Prakash, D., Nawani, N., Prakash, M., et al. (2013). Actinomycetes : A repertory of green catalysts with a potential revenue resource. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/264020
doi: 10.1155/2013/264020
Irfan, M., Nadeem, M., & Syed, Q. (2014). One-factor-at-a-time ( OFAT ) optimization of xylanase production from Trichoderma viride -IR05 in solid-state fermentation. Journal of Radiation Research and Applied Sciences, 7(3), 317–326. https://doi.org/10.1016/j.jrras.2014.04.004
doi: 10.1016/j.jrras.2014.04.004
Garrido, M. M., Piccinni, F. E., Landoni, M., et al. (2022). Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A. Applied Microbiology and Biotechnology, 106(13), 5035–5049. https://doi.org/10.1007/S00253-022-12061-3
doi: 10.1007/S00253-022-12061-3
pubmed: 35799069
Gomathi, D., Muthulakshmi, C., Kumar, D. G., et al. (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pacific Tropical Biomedical Magazine, 2(1), S67–S73. https://doi.org/10.1016/s2221-1691(12)60132-4
doi: 10.1016/s2221-1691(12)60132-4
Singhania, R. R., Sukumaran, R. K., Patel, A. K., et al. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46(7), 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010
doi: 10.1016/j.enzmictec.2010.03.010
Garai, D., & Kumar, V. (2013). Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system : Optimization by Box – Behnken design approach. Biocatalysis and Agricultural Biotechnology, 2(2), 125–131. https://doi.org/10.1016/j.bcab.2013.03.003
doi: 10.1016/j.bcab.2013.03.003
Neifar, M., Jaouani, A., Ayari, A., et al. (2013). Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere, 91, 110–114. https://doi.org/10.1016/j.chemosphere.2012.12.015
doi: 10.1016/j.chemosphere.2012.12.015
pubmed: 23332675
Macedo, E. P., Cerqueira, C. L. O., Souza, D. A. J., et al. (2013). Production of cellulose-degrading enzyme on sisal and other agro-industrial residues using a new Brazilian actinobacteria strain Streptomyces sp. SLBA-08. Brazilian Journal of Medical and Biological Research, 30(4), 729–735. https://doi.org/10.1590/s0104-66322013000400005
doi: 10.1590/s0104-66322013000400005
Pagnanelli, F., Viggi, C. C., & Toro, L. (2010). Development of new composite biosorbents from olive pomace wastes. Applied Surface Science, 256(17), 5492–5497. https://doi.org/10.1016/j.apsusc.2009.12.146
doi: 10.1016/j.apsusc.2009.12.146
Leite, P., Manuel, J., Venâncio, A., et al. (2016). Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresource Technology, 214, 737–746. https://doi.org/10.1016/j.biortech.2016.05.028
doi: 10.1016/j.biortech.2016.05.028
pubmed: 27209456
Alam, Z., Muyibi, S. A., & Wahid, R. (2008). Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technology, 99, 4709–4716. https://doi.org/10.1016/j.biortech.2007.09.072
doi: 10.1016/j.biortech.2007.09.072
pubmed: 17981027
Karabegović, I. T., Stojičević, S. S., Veličković, D. T., et al. (2012). Optimization of microwave-assisted extraction of cherry laurel ( Prunus laurocerasus L.) fruit using response surface methodology. Engineering and Technology, 6, 897–902. https://doi.org/10.5281/zenodo.1085596
doi: 10.5281/zenodo.1085596
Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., et al. (2017) Selective isolation and screening of Actinobacteria strains producing lignocellulolytic enzymes using olive pomace as substrate. Iranian Journal of Biotechnology,15 (1), 74–77. https://doi.org/10.15171/ijb.1278.
Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., et al. (2017). Bioconversion of olive pomace by submerged cultivation of Streptomyces sp. S1M3I. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1425–1433. https://doi.org/10.1007/s40011-017-0880-x
doi: 10.1007/s40011-017-0880-x
Lilitchan, S., Tangprawat, C., & Aryusuk, K. (2008). Partial extraction method for the rapid analysis of total lipids and c-oryzanol contents in rice bran. Food Chemistry, 106, 752–759. https://doi.org/10.1016/j.foodchem.2007.06.052
doi: 10.1016/j.foodchem.2007.06.052
Tuncer, M., Ball, A. S., Rob, A., et al. (1999). Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme and Microbial Technology, 25(1–2), 38–47. https://doi.org/10.1016/S0141-0229(99)00012-5
doi: 10.1016/S0141-0229(99)00012-5
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
Dhillon, A., Gupta, J. K., & Khanna, S. (2000). Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process Biochemistry, 35, 849–856. https://doi.org/10.1016/s0032-9592(99)00152-1
doi: 10.1016/s0032-9592(99)00152-1
Danso, B., Ali, S. S., Xie, R., et al. (2022). Valorisation of wheat straw and bioethanol production by a novel xylanase and cellulase-producing Streptomyces strain isolated from the wood-feeding termite. Microcerotermes species. Fuel, 310, 122333. https://doi.org/10.1016/j.fuel.2021.122333
doi: 10.1016/j.fuel.2021.122333
Xiuting, L., Baoguo, S., Jin, Z., et al. (2011). Production and improved bleaching abilities of a thermostable xylanase from a newly isolated Streptomyces chartreusis strain. African Journal of Biotechnology, 10(64), 14132–14142. https://doi.org/10.5897/AJB10.2360
doi: 10.5897/AJB10.2360
Techapun, C., Charoenrat, T., Watanabe, M., et al. (2002). Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design. Biochemical Engineering Journal, 12, 99–105. https://doi.org/10.1016/s1369-703x(02)00047-5
doi: 10.1016/s1369-703x(02)00047-5
Khangkhachit, W., Suyotha, W., Leamdum, C., et al. (2021). Production of thermostable xylanase using Streptomyces thermocarboxydus ME742 and application in enzymatic conversion of xylan from oil palm empty fruit bunch to xylooligosaccharides. Biocatalysis and Agricultural Biotechnology, 37, 102180. https://doi.org/10.1016/j.bcab.2021.102180
doi: 10.1016/j.bcab.2021.102180
Romero, P., Lussier, M., Véronneau, S., et al. (1999). Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of alpha-1,3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology, 9(10), 1045–1051. https://doi.org/10.1093/glycob/9.10.1045
doi: 10.1093/glycob/9.10.1045
pubmed: 10521541
Bajaj, B. K., & Singh, N. P. (2010). Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Applied Biochemistry and Biotechnology, 162(6), 1804–1818. https://doi.org/10.1007/s12010-010-8960-x
doi: 10.1007/s12010-010-8960-x
pubmed: 20419509
Miyanaga, K., & Unno, H. (2011) Reaction kinetics, and stoichiometry. Comprehensive Biotechnology, 33–46. https://doi.org/10.1016/b978-0-08-088504-9.00085-4.
Sharma, H. K., Xu, C., & Qin, W. (2021). Isolation of bacterial strain with xylanase and xylose/glucose isomerase (GI) activity and whole cell immobilization for improved enzyme production. Waste Biomass Valorization, 12, 833–845. https://doi.org/10.1007/s12649-020-01013-5
doi: 10.1007/s12649-020-01013-5
Adhi, T. P., Korus, R. A., & Crawford, D. L. (1989). Production of major extracellular enzymes during lignocellulose degradation by two streptomycetes in agitated submerged culture. Applied and Environmental Microbiology, 55(5), 1165–1168. https://doi.org/10.1128/aem.55.5.1165-1168.1989
doi: 10.1128/aem.55.5.1165-1168.1989
pubmed: 16347909
pmcid: 184271
Boucherba, N., Benallaoua, S., Copinet, E., et al. (2011). Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochemistry, 46(2), 519–525. https://doi.org/10.1016/j.procbio.2010.10.003
doi: 10.1016/j.procbio.2010.10.003
McCarthy, A. (1987). Lignocellulose degrading actinomycetes. FEMS Microbiology Reviews, 46, 145–163.
doi: 10.1111/j.1574-6968.1987.tb02456.x
Vance, E. D., & Chapin, F. S. (2001). Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 33, 173–188.
doi: 10.1016/S0038-0717(00)00127-9
Naidu, G., & Panda, T. (1998). Production of pectolytic enzymes e a review. Bioprocess Engineering, 19, 355–361. https://doi.org/10.1007/pl00009023
doi: 10.1007/pl00009023
Salhi, M.O. (2004) Valorisation de sous-produits et déchets lignocellulosiques par culture de microorganismes cellulolytiques.Dissertation, Insitut national agronomique El-harrache.
Kumar, A., Gupta, R., Shrivastava, B., et al. (2012). Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. Journal of Molecular Catalysis B: Enzymatic, 74(3–4), 170–177. https://doi.org/10.1016/j.molcatb.2011.10.001
doi: 10.1016/j.molcatb.2011.10.001
Nascimento, R. P., Coelho, R. R. R., Marques, S., et al. (2002). Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme and Microbial Technology, 31, 549–555. https://doi.org/10.1016/S0141-0229(02)00150-3
doi: 10.1016/S0141-0229(02)00150-3
Battestin, V., & Macedo, G. A. (2007). Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electronic Journal of Biotechnology, 10(2), 191–199. https://doi.org/10.2225/vol10-issue2-fulltext-9
doi: 10.2225/vol10-issue2-fulltext-9
Haaland, P. D. (1989) Experimental design in biotechnology. New York.
Sharma, P., & Bajaj, B. K. (2005). Production and partial characterization of alkali-tolerant xylanase from an alkalophilic Streptomyces sp. CD3. Journal of Scientific & Industrial Research, 64, 688–697.
Lafond, M., Tauzin, A., Desseaux, V., et al. (2011). GH10 xylanase D from Penicillium funiculosum : Biochemical studies and xylooligosaccharide production. Microbial Cell Factories, 10(1), 1–8. https://doi.org/10.1186/1475-2859-10-20
doi: 10.1186/1475-2859-10-20
Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23(4), 411–456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
doi: 10.1111/j.1574-6976.1999.tb00407.x
pubmed: 10422261
Taibi, Z., Saoudi, B., Boudelaa, M., et al. (2012). Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost. Applied Biochemistry and Biotechnology, 166, 663–679. https://doi.org/10.1007/s12010-011-9457-y
doi: 10.1007/s12010-011-9457-y
pubmed: 22161140
Chi, W., Park, D. Y., & Chang, Y. (2012). A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: Production, purification and characterization. Applied Biochemistry and Biotechnology, 168, 899–909. https://doi.org/10.1007/s12010-012-9828-z
doi: 10.1007/s12010-012-9828-z
pubmed: 22941270