In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review.


Journal

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
ISSN: 1873-6351
Titre abrégé: Food Chem Toxicol
Pays: England
ID NLM: 8207483

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 19 05 2023
revised: 10 07 2023
accepted: 14 07 2023
pmc-release: 01 09 2024
medline: 7 9 2023
pubmed: 18 7 2023
entrez: 17 7 2023
Statut: ppublish

Résumé

New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these models being mainly developed using datasets generated from drug-like molecules, they were also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has achieved great success in many different fields, advanced machine learning algorithms have been actively applied to improve the accuracy of in silico models. Additionally, the development of liver AOPs, combined with big data in toxicology, has been valuable in developing in silico models with enhanced predictive performance and interpretability. Specifically, one approach involves developing structure-based models for predicting molecular initiating events of liver AOPs, while others use in vitro data with structure information as model inputs for making predictions. Even though liver injury remains a difficult endpoint to predict, advancements in machine learning algorithms and the expansion of in vitro databases with relevant biological knowledge have made a huge impact on improving in silico modeling for drug-induced liver injury prediction.

Identifiants

pubmed: 37460037
pii: S0278-6915(23)00350-2
doi: 10.1016/j.fct.2023.113948
pmc: PMC10640386
mid: NIHMS1921747
pii:
doi:

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

113948

Subventions

Organisme : Intramural FDA HHS
ID : FD999999
Pays : United States

Informations de copyright

Copyright © 2023 Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest None conflicted interest needs to be declared.

Références

Antioxidants (Basel). 2021 Mar 05;10(3):
pubmed: 33807700
Chem Res Toxicol. 2010 Apr 19;23(4):724-32
pubmed: 20192250
Drug Saf. 2010 Jun 1;33(6):503-22
pubmed: 20486732
Drug Metab Dispos. 2015 May;43(5):725-34
pubmed: 25735837
RSC Adv. 2018 Feb 20;8(15):8101-8111
pubmed: 35542036
Toxicology. 2014 Jul 3;321:62-72
pubmed: 24721472
Nucleic Acids Res. 2018 Jul 2;46(W1):W257-W263
pubmed: 29718510
Toxicol Appl Pharmacol. 2022 Nov 1;454:116250
pubmed: 36150479
J Hepatol. 2015 Aug;63(2):503-14
pubmed: 25912521
Drug Metab Rev. 2021 May;53(2):245-252
pubmed: 33683927
Nat Rev Microbiol. 2022 Apr;20(4):193-205
pubmed: 34646006
Drug Discov Today. 2020 Jan;25(1):201-208
pubmed: 31669330
Chem Res Toxicol. 2020 Jan 21;33(1):239-248
pubmed: 31535850
Environ Int. 2022 Jan;158:106892
pubmed: 34583096
BMC Bioinformatics. 2017 May 31;18(Suppl 7):227
pubmed: 28617228
Regul Toxicol Pharmacol. 2009 Jun;54(1):23-42
pubmed: 19422098
Bioinformatics. 2022 Sep 15;38(18):4426-4427
pubmed: 35900148
Healthcare (Basel). 2022 Jan 31;10(2):
pubmed: 35206892
Chem Res Toxicol. 2021 Feb 15;34(2):550-565
pubmed: 33356151
Nat Rev Drug Discov. 2020 Feb;19(2):131-148
pubmed: 31748707
Cell Res. 2022 May;32(5):501-504
pubmed: 35043010
Int J Mol Sci. 2019 Apr 17;20(8):
pubmed: 30999595
Toxicol Res. 2022 Mar 3;38(3):393-407
pubmed: 35865277
J Clin Transl Res. 2018 May 28;4(1):75-100
pubmed: 30873497
Front Toxicol. 2022 Sep 01;4:964553
pubmed: 36119357
Nat Commun. 2020 Sep 4;11(1):4428
pubmed: 32887879
Environ Toxicol Chem. 2010 Mar;29(3):730-41
pubmed: 20821501
Ecotoxicol Environ Saf. 2020 Sep 15;201:110817
pubmed: 32512417
Arch Toxicol. 2020 Oct;94(10):3597-3598
pubmed: 32857209
Regul Toxicol Pharmacol. 2020 Apr;112:104592
pubmed: 32017962
Nat Commun. 2017 Jul 03;8:15932
pubmed: 28671182
Front Pharmacol. 2016 Aug 22;7:267
pubmed: 27597831
Arch Toxicol. 2022 Nov;96(11):2865-2879
pubmed: 35987941
Hepatology. 2021 Dec;74(6):3486-3496
pubmed: 34105804
Front Artif Intell. 2021 Apr 14;4:638410
pubmed: 33937745
J Mol Graph Model. 2008 Jun;26(8):1315-26
pubmed: 18328754
J Appl Toxicol. 2021 Oct;41(10):1518-1526
pubmed: 33469990
ALTEX. 2019 Nov 02;37(2):187-196
pubmed: 31707421
Bioinformatics. 2019 Mar 15;35(6):1067-1069
pubmed: 30165565
ALTEX. 2020 Jun 08;37(4):607-622
pubmed: 32521035
Curr Top Med Chem. 2016;16(30):3668-3677
pubmed: 27334198
Food Chem Toxicol. 2018 Aug;118:409-415
pubmed: 29782898
Toxics. 2022 Dec 14;10(12):
pubmed: 36548621
JACC Basic Transl Sci. 2019 Nov 25;4(7):845-854
pubmed: 31998852
Chem Res Toxicol. 2019 Jan 22;32(1):156-167
pubmed: 30525499
Medicine (Baltimore). 2019 Mar;98(13):e14992
pubmed: 30921214
Bioorg Med Chem Lett. 2015 Nov 1;25(21):4802-4807
pubmed: 26254944
Arch Toxicol. 2014 Jul;88(7):1439-49
pubmed: 24958025
Front Pharmacol. 2020 Feb 14;11:67
pubmed: 32116729
J Hazard Mater. 2022 Aug 15;436:129193
pubmed: 35739723
Drug Discov Today. 2016 Apr;21(4):648-53
pubmed: 26948801
Toxicol Sci. 2022 Mar 28;186(2):242-259
pubmed: 34971401
Chem Res Toxicol. 2020 Mar 16;33(3):731-741
pubmed: 32077278
Toxics. 2018 Apr 17;6(2):
pubmed: 29673137
Food Chem Toxicol. 2020 Aug;142:111494
pubmed: 32553933
J Comput Aided Mol Des. 2017 Jun;31(6):507-521
pubmed: 28527154
Hepatology. 2016 Sep;64(3):931-40
pubmed: 27302180
Clin Transl Sci. 2023 Jan;16(1):37-42
pubmed: 36194091
Nat Rev Drug Discov. 2005 Jun;4(6):489-99
pubmed: 15931258
J Chem Inf Model. 2015 Oct 26;55(10):2085-93
pubmed: 26437739
Clin Pharmacol Ther. 2018 Nov;104(5):916-932
pubmed: 30137645
Mol Inform. 2020 May;39(5):e2000005
pubmed: 32108997
Chem Res Toxicol. 2010 Jul 19;23(7):1215-22
pubmed: 20553011
J Chem Inf Model. 2018 Aug 27;58(8):1501-1517
pubmed: 29949360
Chem Res Toxicol. 2021 Feb 15;34(2):495-506
pubmed: 33347312
Chem Res Toxicol. 2016 May 16;29(5):757-67
pubmed: 26914516

Auteurs

Hyun Kil Shin (HK)

Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea.

Ruili Huang (R)

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA. Electronic address: ruili.huang@nih.gov.

Minjun Chen (M)

Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079, USA. Electronic address: minjun.chen@fda.hhs.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH