Liver insulinization as a driver of triglyceride dysmetabolism.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
07 2023
Historique:
received: 10 03 2023
accepted: 13 06 2023
medline: 13 9 2023
pubmed: 18 7 2023
entrez: 17 7 2023
Statut: ppublish

Résumé

Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly prevalent fellow traveller with the insulin resistance that underlies type 2 diabetes mellitus. However, the mechanistic connection between MAFLD and impaired insulin action remains unclear. In this Perspective, we review data from humans to elucidate insulin's aetiological role in MAFLD. We focus particularly on the relative preservation of insulin's stimulation of triglyceride (TG) biosynthesis despite its waning ability to curb hepatic glucose production (HGP). To explain this apparent 'selective insulin resistance', we propose that hepatocellular processes that lead to TG accumulation require less insulin signal transduction, or 'insulinization,' than do those that regulate HGP. As such, mounting hyperinsulinaemia that barely compensates for aberrant HGP in insulin-resistant states more than suffices to maintain hepatic TG biosynthesis. Thus, even modestly elevated or context-inappropriate insulin levels, when sustained day and night within a heavily pro-lipogenic metabolic milieu, may translate into substantial cumulative TG biosynthesis in the insulin-resistant state.

Identifiants

pubmed: 37460842
doi: 10.1038/s42255-023-00843-6
pii: 10.1038/s42255-023-00843-6
doi:

Substances chimiques

Triglycerides 0
Insulin 0
Glucose IY9XDZ35W2

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1101-1110

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK069861
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK020541
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK063608
Pays : United States

Informations de copyright

© 2023. Springer Nature Limited.

Références

Bril, F. et al. Intact fasting insulin identifies nonalcoholic fatty liver disease in patients without diabetes. J. Clin. Endocrinol. Metab. 106, e4360–e4371 (2021).
pubmed: 34190318
Smith, G. I. et al. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J. Clin. Invest. 130, 3305–3314 (2020).
pubmed: 32191646 pmcid: 7260030
Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox.Cell Metab. 7, 95–96 (2008). In this two-page Preview piece, Brown and Goldstein cogently lay out what is perhaps the definitive statement of the selective-IR model.
pubmed: 18249166
Fryk, E. et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: a mechanistic case–control and a population-based cohort study. EBioMedicine 65, 103264 (2021).
pubmed: 33712379 pmcid: 7992078
van Vliet, S. et al. Obesity is associated with increased basal and postprandial beta cell insulin secretion even in the absence of insulin resistance. Diabetes 69, 2112–2119 (2020).
pubmed: 32651241 pmcid: 7506835
Trico, D., Natali, A., Arslanian, S., Mari, A. & Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 3, e124912 (2018).
pubmed: 30568042 pmcid: 6338316
Rizza, R. A., Mandarino, L. J., Genest, J., Baker, B. A. & Gerich, J. E. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 28, 70–75 (1985).
pubmed: 3884419
Johnson, J. D. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64, 2138–2146 (2021).
pubmed: 34296322
Chandel, S. et al. Hyperinsulinemia promotes endothelial inflammation via increased expression and release of angiopoietin-2. Atherosclerosis 307, 1–10 (2020).
pubmed: 32679352
Pramfalk, C. et al. Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65, 1858–1867 (2016).
Ter Horst, K. W. et al. Hepatic insulin resistance is not pathway selective in humans with nonalcoholic fatty liver disease.Diabetes Care 44, 489–498 (2021). This observational study challenges the selective IR model by demonstrating that a glucose challenge does not acutely stimulate DNL in patients with MAFLD despite a surge in insulin levels, while a fructose challenge that produces a much smaller rise in insulin does promote DNL
Aarsland, A., Chinkes, D. & Wolfe, R. R. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J. Clin. Invest. 98, 2008–2017 (1996).
pmcid: 507644
Baykal, A. P. et al. Leptin decreases DNL in patients with lipodystrophy. JCI Insight 5, e137180 (2020).
pmcid: 7453896
Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis.J. Clin. Invest. 119, 315–322 (2009). Assembling data from patients with several forms of insulin receptoropathy, this is the most compelling human demonstration to date that hepatic TG biosynthesis requires intact insulin signalling.
pmcid: 2631303
Cook, J. R., Langlet, F., Kido, Y. & Accili, D. Pathogenesis of selective insulin resistance in isolated hepatocytes.J. Biol. Chem. 290, 13972–13980 (2015). We provide evidence for the cell autonomy of process-specific insulinization thresholds by demonstrating that glucose production and DNL are differentially sensitive to insulin in mouse primary hepatocytes.
pmcid: 4447970
Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184–16189 (2012).
pmcid: 3479583
Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease.J. Clin. Invest. 130, 1453–1460 (2020). This study comprehensively metabolically phenotypes patients with obesity, obesity + MAFLD, and healthy controls to argue that hyperinsulinaemia promotes liver fat accumulation despite overall hepatic insulin resistance.
pmcid: 7269561
Sorensen, L. P. et al. Increased VLDL-triglyceride secretion precedes impaired control of endogenous glucose production in obese, normoglycemic men. Diabetes 60, 2257–2264 (2011).
pmcid: 3161323
Fu, X. et al. Persistent fasting lipogenesis links impaired ketogenesis with citrate synthesis in humans with non-alcoholic fatty liver. J. Clin. Invest. 133, e167442 (2023). The authors simultaneously evaluate multiple metabolic processes in patients with or without MAFLD during longer fasting periods to illustrate insulin’s ‘selective’ regulation of hepatic fat versus glucose metabolism.
Honma, M. et al. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. Int. J. Obes. 42, 1544–1555 (2018).
Anderwald, C. et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle.Diabetes 51, 3025–3032 (2002). This rigorous prolonged clamp study of patients with MAFLD provides clear support for the ‘gas pedal’ model of insulin’s regulation of hepatic DNL by showing that raising insulin levels increases hepatic DNL and fat content independently of changes in glucose and FFAs.
pubmed: 12351443
Santoleri, D. & Titchenell, P. M. Resolving the paradox of hepatic insulin resistance. Cell Mol. Gastroenterol. Hepatol. 7, 447–456 (2019).
pubmed: 30739869
Lewis, G. F., Vranic, M. & Giacca, A. Role of free fatty acids and glucagon in the peripheral effect of insulin on glucose production in humans. Am. J. Physiol. 275, E177–E186 (1998).
pubmed: 9688888
Gastaldelli, A., Gaggini, M. & DeFronzo, R. A. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes 66, 815–822 (2017).
pubmed: 28052966
Nurjhan, N., Consoli, A. & Gerich, J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169–175 (1992).
pubmed: 1729269 pmcid: 442833
Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).
pubmed: 15864352 pmcid: 1087172
Vedala, A., Wang, W., Neese, R. A., Christiansen, M. P. & Hellerstein, M. K. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J. Lipid Res. 47, 2562–2574 (2006).
pubmed: 16929033
Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).
pubmed: 24316260
Stanhope, K. L. et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 96, E1596–E1605 (2011).
pubmed: 21849529 pmcid: 3200248
Hernandez, E. A. et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695–708 (2017).
pubmed: 28112681 pmcid: 5272194
Shojaee-Moradie, F., Ma, Y., Lou, S., Hovorka, R. & Umpleby, A. M. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes 62, 4063–4069 (2013).
pubmed: 23990358 pmcid: 3837057
Sekizkardes, H. et al. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J. Clin. Invest. 130, 3592–3602 (2020).
pubmed: 32191645 pmcid: 7324196
Chudasama, K. K. et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am. J. Hum. Genet. 93, 150–157 (2013).
pubmed: 23810379 pmcid: 3710758
Huang-Doran, I. et al. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 1, e88766 (2016).
pubmed: 27766312 pmcid: 5070960
George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).
pubmed: 15166380 pmcid: 2258004
Parks, E. J., Krauss, R. M., Christiansen, M. P., Neese, R. A. & Hellerstein, M. K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Invest. 104, 1087–1096 (1999).
pubmed: 10525047 pmcid: 408572
Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017).
pubmed: 28697184 pmcid: 6048953
Challis, B. G. et al. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: implications for pharmacological glucokinase activation. Clin. Endocrinol. 81, 855–861 (2014).
Duvillard, L. et al. Endogenous chronic hyperinsulinemia does not increase the production rate of VLDL apolipoprotein B: proof from a kinetic study in patients with insulinoma. J. Clin. Endocrinol. Metab. 96, 2163–2170 (2011).
pubmed: 21430026
Takeshita, A. et al. Focal hepatic steatosis surrounding a metastatic insulinoma. Pathol. Int. 58, 59–63 (2008).
pubmed: 18067643
Markmann, J. F. et al. Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: a functional footprint of islet graft survival? Diabetes 52, 1591–1594 (2003).
pubmed: 12829620
Gregory, J. M. et al. Iatrogenic hyperinsulinemia, not hyperglycemia, drives insulin resistance in type 1 diabetes as revealed by comparison with GCK-MODY (MODY2). Diabetes 68, 1565–1576 (2019).
pubmed: 31092478 pmcid: 6692813
Leiter, S. M. et al. Hypoinsulinaemic, hypoketotic hypoglycaemia due to mosaic genetic activation of PI3-kinase. Eur. J. Endocrinol. 177, 175–186 (2017).
pubmed: 28566443 pmcid: 5488397
Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).
pubmed: 21979934 pmcid: 3204221
Minic, M. et al. Constitutive activation of AKT2 in humans leads to hypoglycemia without fatty liver or metabolic dyslipidemia. J. Clin. Endocrinol. Metab. 102, 2914–2921 (2017).
pubmed: 28541532 pmcid: 5546860
Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O’Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011).
pubmed: 21536711
Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).
pubmed: 12021250 pmcid: 150981
Chait, A., Janus, E., Mason, A. S. & Lewis, B. Lipodystrophy with hyperlipidaemia: the role of insulin in very low density lipoprotein over-synthesis. Clin. Endocrinol. 10, 173–178 (1979).
Lee, G. A. et al. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. AIDS 21, 2183–2190 (2007).
pubmed: 18090045
Schwarz, J. M. et al. Indinavir increases glucose production in healthy HIV-negative men. AIDS 18, 1852–1854 (2004).
pubmed: 15316349
Purnell, J. Q. et al. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS 14, 51–57 (2000).
pubmed: 10714567
Calza, L. et al. Improvement in insulin sensitivity and serum leptin concentration after the switch from a ritonavir-boosted PI to raltegravir or dolutegravir in non-diabetic HIV-infected patients. J. Antimicrob. Chemother. 74, 731–738 (2019).
pubmed: 30541118
Calza, L. et al. Improvement in liver steatosis after the switch from a ritonavir-boosted protease inhibitor to raltegravir in HIV-infected patients with non-alcoholic fatty liver disease. Infect. Dis. 51, 593–601 (2019).
Lewis, G. F., Uffelman, K. D., Szeto, L. W., Weller, B. & Steiner, G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Invest. 95, 158–166 (1995).
pubmed: 7814610 pmcid: 295395
Poulsen, M. K. et al. Impaired insulin suppression of VLDL-triglyceride kinetics in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 101, 1637–1646 (2016).
pubmed: 26829441
Hudgins, L. C., Parker, T. S., Levine, D. M. & Hellerstein, M. K. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J. Clin. Endocrinol. Metab. 96, 861–868 (2011).
pubmed: 21252253 pmcid: 3047222
Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122–1129 (2008).
pubmed: 18684130
Parks, E. J., Skokan, L. E., Timlin, M. T. & Dingfelder, C. S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 138, 1039–1046 (2008).
pubmed: 18492831
Green, C. J. et al. Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. Eur. J. Endocrinol. 186, 367–377 (2022).
pubmed: 35038311 pmcid: 8859923
Timlin, M. T. & Parks, E. J. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am. J. Clin. Nutr. 81, 35–42 (2005).
pubmed: 15640457
Hudgins, L. C. et al. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 41, 595–604 (2000).
pubmed: 10744780
Smith, G. I. et al. One day of mixed meal overfeeding reduces hepatic insulin sensitivity and increases VLDL particle but not VLDL-triglyceride secretion in overweight and obese men. J. Clin. Endocrinol. Metab. 98, 3454–3462 (2013).
pubmed: 23750033 pmcid: 3733854
Manousaki, D. et al. Toward precision medicine: TBC1D4 disruption is common among the Inuit and leads to underdiagnosis of type 2 diabetes. Diabetes Care 39, 1889–1895 (2016).
pubmed: 27561922
Mitrakou, A. et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N. Engl. J. Med. 326, 22–29 (1992).
pubmed: 1727062
Yadav, Y. et al. Impaired diurnal pattern of meal tolerance and insulin sensitivity in type 2 diabetes: implications for therapy. Diabetes 72, 223–232 (2023).
pubmed: 36346619
Page, M. M. & Johnson, J. D. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance. Trends Endocrinol. Metab. 29, 389–399 (2018).
pubmed: 29665988
Orskov, L., Moller, N., Bak, J. F., Porksen, N. & Schmitz, O. Effects of the somatostatin analog, octreotide, on glucose metabolism and insulin sensitivity in insulin-dependent diabetes mellitus. Metabolism 45, 211–217 (1996).
pubmed: 8596492
Kishore, P. et al. Activation of K(ATP) channels suppresses glucose production in humans. J. Clin. Invest. 121, 4916–4920 (2011).
pubmed: 22056385 pmcid: 3225998
Alemzadeh, R., Langley, G., Upchurch, L., Smith, P. & Slonim, A. E. Beneficial effect of diazoxide in obese hyperinsulinemic adults. J. Clin. Endocrinol. Metab. 83, 1911–1915 (1998).
pubmed: 9626118
Due, A. et al. No effect of inhibition of insulin secretion by diazoxide on weight loss in hyperinsulinaemic obese subjects during an 8-week weight-loss diet. Diabetes Obes. Metab. 9, 566–574 (2007).
pubmed: 17587399
Schreuder, T. et al. Diazoxide-mediated insulin suppression in obese men: a dose–response study. Diabetes Obes. Metab. 7, 239–245 (2005).
pubmed: 15811140
Loves, S. et al. Effects of diazoxide-mediated insulin suppression on glucose and lipid metabolism in nondiabetic obese men. J. Clin. Endocrinol. Metab. 103, 2346–2353 (2018).
pubmed: 29618011
Qvigstad, E., Kollind, M. & Grill, V. Nine weeks of bedtime diazoxide is well tolerated and improves beta-cell function in subjects with type 2 diabetes. Diabet. Med. 21, 73–76 (2004).
pubmed: 14706058
Esterson, Y. B. et al. Central regulation of glucose production may be impaired in type 2 diabetes. Diabetes 65, 2569–2579 (2016).
pubmed: 27207526 pmcid: 5001178
Juurinen, L., Tiikkainen, M., Hakkinen, A. M., Hakkarainen, A. & Yki-Jarvinen, H. Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E829–E835 (2007).
pubmed: 17090752
Liu, L. et al. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 36, e3292 (2020).
pubmed: 31955491
Tang, A. et al. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care 38, 1339–1346 (2015).
pubmed: 25813773
Yan, J. et al. Liraglutide, sitagliptin and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology 69, 2414–2426 (2019).
pubmed: 30341767
Shao, N. et al. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 30, 521–529 (2014).
pubmed: 24823873
Gastaldelli, A. & Cusi, K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. JHEP Rep. 1, 312–328 (2019).
pmcid: 7001557
Saponaro, C., Gaggini, M., Carli, F. & Gastaldelli, A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7, 9453–9474 (2015).
pmcid: 4663603
Gastaldelli, A., Stefan, N. & Haring, H. U. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 64, 1461–1479 (2021).
pubmed: 33877366 pmcid: 8187191
Edgerton, D. S., Moore, M. C., Gregory, J. M., Kraft, G. & Cherrington, A. D. Importance of the route of insulin delivery to its control of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 320, E891–E897 (2021).
pubmed: 33813879 pmcid: 8238128
Ferrannini, E. Physiology of glucose homeostasis and insulin therapy in type 1 and type 2 diabetes. Endocrinol. Metab. Clin. North Am. 41, 25–39 (2012).
pubmed: 22575405
Bergenstal, R. M. et al. A randomized, controlled study of once-daily LY2605541, a novel long-acting basal insulin, versus insulin glargine in basal insulin-treated patients with type 2 diabetes. Diabetes Care 35, 2140–2147 (2012).
pubmed: 22787177 pmcid: 3476888
Cusi, K. et al. Different effects of basal insulin peglispro and insulin glargine on liver enzymes and liver fat content in patients with type 1 and type 2 diabetes. Diabetes Obes. Metab. 18, 50–58 (2016).
pubmed: 27723227
Orchard, T. J. et al. The effects of basal insulin peglispro vs. insulin glargine on lipoprotein particles by NMR and liver fat content by MRI in patients with diabetes. Cardiovasc. Diabetol. 16, 73 (2017).
pubmed: 28587667 pmcid: 5461740
Johansen, R. F. et al. Attenuated suppression of lipolysis explains the increases in triglyceride secretion and concentration associated with basal insulin peglispro relative to insulin glargine treatment in patients with type 1 diabetes. Diabetes Obes. Metab. 20, 419–426 (2018).
pubmed: 28817248
Ginsberg, H. et al. Lipid changes during basal insulin peglispro, insulin glargine, or NPH treatment in six IMAGINE trials. Diabetes Obes. Metab. 18, 1089–1092 (2016).
pubmed: 27486125
Conte, C. et al. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 35, 1316–1321 (2012).
pubmed: 22474039 pmcid: 3357234
Nurjhan, N., Campbell, P. J., Kennedy, F. P., Miles, J. M. & Gerich, J. E. Insulin dose–response characteristics for suppression of glycerol release and conversion to glucose in humans. Diabetes 35, 1326–1331 (1986).
pubmed: 3533681
Reeds, D. N., Stuart, C. A., Perez, O. & Klein, S. Adipose tissue, hepatic, and skeletal muscle insulin sensitivity in extremely obese subjects with acanthosis nigricans. Metabolism 55, 1658–1663 (2006).
pubmed: 17142140
Arioglu, E. et al. Clinical course of the syndrome of autoantibodies to the insulin receptor (type B insulin resistance): a 28-year perspective. Medicine 81, 87–100 (2002).
pubmed: 11889410
Juric, D. et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 5, e184475 (2019).
pubmed: 30543347
Liu, D. et al. Characterization, management, and risk factors of hyperglycemia during PI3K or AKT inhibitor treatment. Cancer Med. 11, 1796–1804 (2022).
pubmed: 35212193 pmcid: 9041081
Haas, J. T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873–884 (2012).
pmcid: 3383842
Titchenell, P. M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).
pmcid: 4909537
Chattopadhyay, M., Selinger, E. S., Ballou, L. M. & Lin, R. Z. Ablation of PI3K p110-alpha prevents high-fat diet-induced liver steatosis. Diabetes 60, 1483–1492 (2011).
pmcid: 3292322
Foukas, L. C. et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).
Hedges, C. P. et al. Efficacy of providing the PI3K p110α inhibitor BYL719 (alpelisib) to middle-aged mice in their diet. Biomolecules 11, 150 (2021).
pubmed: 33503847 pmcid: 7911305

Auteurs

Joshua R Cook (JR)

Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA. jrc2175@cumc.columbia.edu.

Meredith A Hawkins (MA)

Diabetes Research and Training Center, Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA.

Utpal B Pajvani (UB)

Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH