Autophagy protein 5 controls flow-dependent endothelial functions.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
18 Jul 2023
Historique:
received: 19 12 2022
accepted: 04 07 2023
revised: 28 06 2023
medline: 19 7 2023
pubmed: 18 7 2023
entrez: 17 7 2023
Statut: epublish

Résumé

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.

Identifiants

pubmed: 37460898
doi: 10.1007/s00018-023-04859-9
pii: 10.1007/s00018-023-04859-9
pmc: PMC10352428
doi:

Substances chimiques

Autophagy-Related Protein 5 0
Nitric Oxide Synthase Type III EC 1.14.13.39

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

210

Subventions

Organisme : European Research Council
ID : 107037
Pays : International

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720
pubmed: 23817233 pmcid: 7097732 doi: 10.1038/ncb2788
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662
pubmed: 23406030 doi: 10.1056/NEJMra1205406
Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12
pubmed: 20225336 pmcid: 2990190 doi: 10.1002/path.2697
Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695
pubmed: 21884931 doi: 10.1016/j.cell.2011.07.030
Shibata M et al (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485
pubmed: 16522639 doi: 10.1074/jbc.M600364200
Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478
pubmed: 20519119 pmcid: 2881480 doi: 10.1016/j.cmet.2010.04.005
Singh R et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339
pubmed: 19855132 pmcid: 2769174
Melendez A et al (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391
pubmed: 12958363 doi: 10.1126/science.1087782
Lipinski MM et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169
pubmed: 20660724 pmcid: 2922576 doi: 10.1073/pnas.1009485107
Lenoir O, Tharaux PL, Huber TB (2016) Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 90:950–964
pubmed: 27325184 doi: 10.1016/j.kint.2016.04.014
Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3:597–599
pubmed: 17912023 doi: 10.4161/auto.4989
Fernandez AF et al (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136–140
pubmed: 29849149 pmcid: 5992097 doi: 10.1038/s41586-018-0162-7
Nakamura S et al (2019) Suppression of autophagic activity by Rubicon is a signature of aging. Nat Commun 10:847
pubmed: 30783089 pmcid: 6381146 doi: 10.1038/s41467-019-08729-6
Pyo JO et al (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300
pubmed: 23939249 doi: 10.1038/ncomms3300
Lenoir O et al (2015) Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11:1130–1145
pubmed: 26039325 pmcid: 4590611 doi: 10.1080/15548627.2015.1049799
Sprott D et al (2019) Endothelial-specific deficiency of ATG5 (autophagy protein 5) attenuates ischemia-related angiogenesis. Arterioscler Thromb Vasc Biol 39:1137–1148
pubmed: 31070476 doi: 10.1161/ATVBAHA.119.309973
Vion AC et al (2017) Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci U S A 114:E8675–E8684
pubmed: 28973855 pmcid: 5642679 doi: 10.1073/pnas.1702223114
Hermann M (2006) Cyclooxygenase-2 and nitric oxide. J Cardiovasc Pharmacol 47(Suppl 1):S21-25
pubmed: 16785825 doi: 10.1097/00005344-200605001-00005
Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387
pubmed: 21248169 doi: 10.1152/physrev.00047.2009
Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126
pubmed: 16167340 doi: 10.1002/jcb.20614
Tzima E et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431
pubmed: 16163360 doi: 10.1038/nature03952
Jin ZG et al (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93:354–363
pubmed: 12893742 doi: 10.1161/01.RES.0000089257.94002.96
Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111
pubmed: 16118242 doi: 10.1242/jcs.02541
Schaaf MB, Houbaert D, Mece O, Agostinis P (2019) Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 26:665–679
pubmed: 30692642 pmcid: 6460396 doi: 10.1038/s41418-019-0287-8
Dengjel J et al (2012) Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteom 11:M111 014035
doi: 10.1074/mcp.M111.014035
Torisu T et al (2013) Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 19:1281–1287
pubmed: 24056772 pmcid: 3795899 doi: 10.1038/nm.3288
Singh KK et al (2015) The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290:2547–2559
pubmed: 25527499 doi: 10.1074/jbc.M114.604603
Shao Z et al (2013) Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS ONE 8:e69552
pubmed: 23922736 pmcid: 3724908 doi: 10.1371/journal.pone.0069552
Roatta S, Roncari S, Micieli G, Bosone D, Passatore M (2000) Doppler sonography to monitor flow in different cerebral arteries in the rabbit. Exp Physiol 85:431–438
pubmed: 10918082 doi: 10.1111/j.1469-445X.2000.02038.x
Poittevin M et al (2015) Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice. Diabetes 64:999–1010
pubmed: 25288671 doi: 10.2337/db14-0759
Barabutis N (2020) P53 in lung vascular barrier dysfunction. Vasc Biol 2:E1–E2
pubmed: 32613156 pmcid: 7328920 doi: 10.1530/VB-20-0004
Gargalovic PS et al (2006) The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 26:2490–2496
pubmed: 16931790 doi: 10.1161/01.ATV.0000242903.41158.a1
Mahajan CN, Afolayan AJ, Eis A, Teng RJ, Konduri GG (2015) Altered prostanoid metabolism contributes to impaired angiogenesis in persistent pulmonary hypertension in a fetal lamb model. Pediatr Res 77:455–462
pubmed: 25521916 doi: 10.1038/pr.2014.209
Chen D et al (2017) E-prostanoid 3 receptor mediates sprouting angiogenesis through suppression of the protein kinase A/beta-catenin/notch pathway. Arterioscler Thromb Vasc Biol 37:856–866
pubmed: 28254818 doi: 10.1161/ATVBAHA.116.308587
Hoang KG, Allison S, Murray M, Petrovic N (2015) Prostanoids regulate angiogenesis acting primarily on IP and EP4 receptors. Microvasc Res 101:127–134
pubmed: 26188701 doi: 10.1016/j.mvr.2015.07.004
Fei P et al (2004) Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6:597–609
pubmed: 15607964 doi: 10.1016/j.ccr.2004.10.012
Liu J et al (2015) Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 6:e1827
pubmed: 26181207 pmcid: 4650738 doi: 10.1038/cddis.2015.193
Guo F et al (2014) Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann Biomed Eng 42:1978–1988
pubmed: 24838486 doi: 10.1007/s10439-014-1033-5
McCarthy CG et al (2019) Reconstitution of autophagy ameliorates vascular function and arterial stiffening in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 317:H1013–H1027
pubmed: 31469290 pmcid: 6879927 doi: 10.1152/ajpheart.00227.2019
Bharath LP et al (2014) Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol 92:605–612
pubmed: 24941409 pmcid: 8370712 doi: 10.1139/cjpp-2014-0017
Bharath LP et al (2017) Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent purinergic signaling to endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 37:1646–1656
pubmed: 28684613 pmcid: 5693355 doi: 10.1161/ATVBAHA.117.309510
Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE (1994) Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 24:1468–1474
pubmed: 7930277 doi: 10.1016/0735-1097(94)90141-4
Kugiyama K et al (1997) Nitric oxide-mediated flow-dependent dilation is impaired in coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 30:920–926
pubmed: 9316519 doi: 10.1016/S0735-1097(97)00236-2
Dumont O, Loufrani L, Henrion D (2007) Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 27:317–324
pubmed: 17158349 doi: 10.1161/01.ATV.0000254684.80662.44
Dumont O et al (2008) Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine. Cardiovasc Res 77:600–608
pubmed: 18006444 doi: 10.1093/cvr/cvm055
Belin de Chantemele EJ et al (2009) Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res 81:788–796
pubmed: 19050009 doi: 10.1093/cvr/cvn334
Tuttle JL et al (2002) Impaired collateral artery development in spontaneously hypertensive rats. Microcirculation 9:343–351
pubmed: 12375172 doi: 10.1038/sj.mn.7800151
Ye LX et al (2014) Beclin 1 knockdown retards re-endothelialization and exacerbates neointimal formation via a crosstalk between autophagy and apoptosis. Atherosclerosis 237:146–154
pubmed: 25238224 doi: 10.1016/j.atherosclerosis.2014.08.052
Fraser J et al (2019) Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep 20:e47734
pubmed: 31448519 pmcid: 6776898 doi: 10.15252/embr.201947734
Oberlin E, El Hafny B, Petit-Cocault L, Souyri M (2010) Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression. Int J Dev Biol 54:1165–1173
pubmed: 20711993 doi: 10.1387/ijdb.103121eo
Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889
pubmed: 16625204 doi: 10.1038/nature04724
Mizushima N, Kuma A (2008) Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol 445:119–124
pubmed: 18425446 doi: 10.1007/978-1-59745-157-4_7
Caillon A et al (2016) The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc Res. https://doi.org/10.1093/cvr/cvw172
doi: 10.1093/cvr/cvw172 pubmed: 27328880
Loufrani L, Levy BI, Henrion D (2002) Defect in microvascular adaptation to chronic changes in blood flow in mice lacking the gene encoding for dystrophin. Circ Res 91:1183–1189
pubmed: 12480820 doi: 10.1161/01.RES.0000047505.11002.81
Zouggari Y et al (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19:1273–1280
pubmed: 24037091 pmcid: 4042928 doi: 10.1038/nm.3284
Sabaa N et al (2008) Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest 118:1924–1933
pubmed: 18382768 pmcid: 2276396 doi: 10.1172/JCI33308
Bonnin P, Sabaa N, Flamant M, Debbabi H, Tharaux PL (2008) Ultrasound imaging of renal vaso-occlusive events in transgenic sickle mice exposed to hypoxic stress. Ultrasound Med Biol 34:1076–1084
pubmed: 18258352 doi: 10.1016/j.ultrasmedbio.2007.12.003
Bonnin P et al (2011) Impact of intracranial blood-flow redistribution on stroke size during ischemia-reperfusion in 7-day-old rats. J Neurosci Methods 198:103–109
pubmed: 21420433 doi: 10.1016/j.jneumeth.2011.02.030
Bonnin P et al (2012) Dual action of NO synthases on blood flow and infarct volume consecutive to neonatal focal cerebral ischemia. Exp Neurol 236:50–57
pubmed: 22531298 doi: 10.1016/j.expneurol.2012.04.001
Henrion D et al (1997) Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. Br J Pharmacol 121:83–90
pubmed: 9146891 pmcid: 1564658 doi: 10.1038/sj.bjp.0701109
Dubroca C et al (2007) RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries. Cardiovasc Res 73:190–197
pubmed: 17150200 doi: 10.1016/j.cardiores.2006.10.020
Jung O et al (2005) Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension 45:759–765
pubmed: 15699457 doi: 10.1161/01.HYP.0000153792.29478.1d
Camelo S et al (2012) Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages. Angiogenesis 15:609–622
pubmed: 22869002 pmcid: 3496480 doi: 10.1007/s10456-012-9290-0
Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119:315–326
pubmed: 28314612 doi: 10.1016/j.acthis.2017.03.001
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57
pubmed: 19131956 doi: 10.1038/nprot.2008.211
Sherman BT et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkac194
doi: 10.1093/nar/gkac194 pubmed: 35325185 pmcid: 9252805
Yao J, Qiu Y, Jia L, Zacks DN (2019) Autophagosome immunoisolation from GFP-LC3B mouse tissue. Autophagy 15:341–346
pubmed: 30354910 doi: 10.1080/15548627.2018.1539591
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat biotechnol 26:1367–1372
pubmed: 19029910 doi: 10.1038/nbt.1511
Tyanova S et al (2016) The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740
pubmed: 27348712 doi: 10.1038/nmeth.3901
Veyrat-Durebex C et al (2019) Metabo-lipidomics of fibroblasts and mitochondrial-endoplasmic reticulum extracts from ALS patients shows alterations in purine, pyrimidine, energetic, and phospholipid metabolisms. Mol Neurobiol 56:5780–5791
pubmed: 30680691 doi: 10.1007/s12035-019-1484-7
Veyrat-Durebex C et al (2018) Metabolomics and lipidomics profiling of a combined mitochondrial plus endoplasmic reticulum fraction of human fibroblasts: a robust tool for clinical studies. J Proteome Res 17:745–750
pubmed: 29111762 doi: 10.1021/acs.jproteome.7b00637
Bocca C et al (2018) The metabolomic bioenergetic signature of Opa1-disrupted mouse embryonic fibroblasts highlights aspartate deficiency. Sci Rep 8:11528
pubmed: 30068998 pmcid: 6070520 doi: 10.1038/s41598-018-29972-9
Kouassi Nzoughet J et al (2017) A nontargeted UHPLC-HRMS metabolomics pipeline for metabolite identification: application to cardiac remote ischemic preconditioning. Anal Chem 89:2138–2146
pubmed: 27992159 doi: 10.1021/acs.analchem.6b04912
Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232
pubmed: 17210054 doi: 10.1111/j.1365-2818.2006.01706.x
Perez-Riverol Y et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Pierre Nivoit (P)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Thomas Mathivet (T)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Junxi Wu (J)

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 ONW, UK.

Yann Salemkour (Y)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Devanarayanan Siva Sankar (DS)

Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.

Véronique Baudrie (V)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Jennifer Bourreau (J)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.

Anne-Laure Guihot (AL)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.

Emilie Vessieres (E)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.

Mathilde Lemitre (M)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Cinzia Bocca (C)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.
Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49500, Angers, France.

Jérémie Teillon (J)

CNRS, Inserm, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Université de Bordeaux, 33000, Bordeaux, France.

Morgane Le Gall (M)

Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, 75014, Paris, France.

Anna Chipont (A)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Estelle Robidel (E)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Neeraj Dhaun (N)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.
Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.

Eric Camerer (E)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Pascal Reynier (P)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.
Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49500, Angers, France.

Etienne Roux (E)

Inserm, Biologie Des Maladies Cardiovasculaires, U1034, Université de Bordeaux, 33600, Pessac, France.

Thierry Couffinhal (T)

Inserm, Biologie Des Maladies Cardiovasculaires, U1034, Université de Bordeaux, 33600, Pessac, France.

Patrick W F Hadoke (PWF)

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.

Jean-Sébastien Silvestre (JS)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Xavier Guillonneau (X)

Institut de La Vision, INSERM, CNRS, Sorbonne Université, 75012, Paris, France.

Philippe Bonnin (P)

AP-HP, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Hypertension Unit, Université Paris Cité, 75010, Paris, France.

Daniel Henrion (D)

MITOVASC, CNRS UMR 6015, Inserm U1083, Université d'Angers, 49500, Angers, France.

Joern Dengjel (J)

Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.

Pierre-Louis Tharaux (PL)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France.

Olivia Lenoir (O)

Inserm, Université Paris Cité, PARCC, 56 Rue Leblanc, 75015, Paris, France. olivia.lenoir@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH