Floral nectar production: what cost to a plant?

floral nectar cost photosynthesis plant energy pollination removal-enhanced nectar production seed production

Journal

Biological reviews of the Cambridge Philosophical Society
ISSN: 1469-185X
Titre abrégé: Biol Rev Camb Philos Soc
Pays: England
ID NLM: 0414576

Informations de publication

Date de publication:
12 2023
Historique:
revised: 29 05 2023
received: 26 09 2022
accepted: 30 06 2023
medline: 7 11 2023
pubmed: 18 7 2023
entrez: 18 7 2023
Statut: ppublish

Résumé

Floral nectar production is central to plant pollination, and hence to human wellbeing. As floral nectar is essentially a solution in water of various sugars, it is likely a valuable plant resource, especially in terms of energy, with plants experiencing costs/trade-offs associated with its production or absorption and adopting mechanisms to regulate nectar in flowers. Possible costs of nectar production may also influence the evolution of nectar volume, concentration and composition, of pollination syndromes involving floral nectar, and the production of some crops. There has been frequent agreement that costs of floral nectar production are significant, but relevant evidence is scant and difficult to interpret. Convincing direct evidence comes from experimental studies that relate either enhanced nectar sugar production (through repeated nectar removal) to reduced ability to produce seeds, or increased sugar availability (through absorption of additional artificial nectar) to increased seed production. Proportions of available photosynthate allocated by plants to nectar production may also indicate nectar cost. However, such studies are rare, some do not include treatments of all (or almost all) flowers per plant, and all lack quantitative cost-benefit comparisons for nectar production. Additional circumstantial evidence of nectar cost is difficult to interpret and largely equivocal. Future research should repeat direct experimental approaches that relate reduced or enhanced nectar sugar availability for a plant with consequent ability to produce seeds. To avoid confounding effects of inter-flower resource transfer, each plant should experience a single treatment, with treatment of all or almost all flowers per plant. Resource allocation by plants, pathways used for resource transfer, and the locations of resource sources and sinks should also be investigated. Future research should also consider extension of nectar cost into other areas of biology. For example, evolutionary models of nectar production are rare but should be possible if plant fitness gains and costs associated with nectar production are expressed in the same currency, such as energy. It should then be possible to understand observed nectar production for different plant species and pollination syndromes involving floral nectar. In addition, potential economic benefits should be possible to assess if relationships between nectar production and crop value are evaluated.

Identifiants

pubmed: 37461187
doi: 10.1111/brv.12997
doi:

Substances chimiques

Plant Nectar 0
Sugars 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2078-2090

Informations de copyright

© 2023 Cambridge Philosophical Society.

Références

Anton, S., Komon-Janczara, E. & Denisow, B. (2017). Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors. Planta 246(6), 1051-1067.
Ashman, T. L. & Schoen, D. J. (1997). The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evolutionary Ecology 11(3), 289-300.
Balducci, M. G., Van der Niet, T. & Johnson, S. D. (2020). Diel scent and nectar rhythms of an African orchid in relation to bimodal activity patterns of hawkmoth pollinators. Annals of Botany 126(7), 1155-1164.
Batey, I. (1907). On fifteen thousand acres: its bird-life sixty years ago. Emu 7, 1-17.
Beutler, R. (1930). Biologisch-chemische Untersuchungen am Nektar von Immenblumen. Zeitschr Wiss Biol Abt C Zeitschr Vergleich Physiol 12(1), 72-176.
Bonnier, G. (1879). Les nectaries. Annales des Sciences Naturelles Botanique 8, 5-212.
Brandenburg, A., Dell'olivo, A., Bshary, R. & Kuhlemeier, C. (2009). The sweetest thing. Advances in nectar research. Current Opinion in Plant Biology 12(4), 486-490.
Brandenburg, A., Kuhlemeier, C. & Bshary, R. (2012). Hawkmoth pollinators decrease seed set of a low-nectar Petunia axillaris line through reduced probing time. Current Biology 22(17), 1635-1639.
Broadhead, G. T. & Raguso, R. A. (2021). Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth. Journal of Experimental Biology 224(12), jeb234633.
Brown, H. D. (1959). Effects of respiratory inhibitors upon nectar secretion in Antirrhinum. Bulletin of the Torrey Botanical Club 86(5), 290-295.
Brown, J. H., Calder, W. A. III & Kodric-Brown, A. (1978). Correlates and consequences of body size in nectar feeding birds. American Zoologist 18(4), 687-700.
Burquez, A. & Corbet, S. A. (1991). Do flowers reabsorb nectar? Functional Ecology 5, 369-379.
Cardoso-Gustavson, P. & Davis, A. R. (2015). Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes? Plant Biology 17(1), 134-146.
Carroll, A. B., Pallardy, S. G. & Galen, C. (2001). Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany 88(3), 438-446.
Carter, C., Graham, R. A. & Thornburg, R. W. (1999). Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology 41(2), 207-216.
Castellanos, M. C., Wilson, P. & Thomson, J. D. (2002). Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany 89, 111-118.
Darwin, C. R. (1862). On the Various Contrivances by which British and Foreign Orchids Are Fertilized. Murray, London.
Dong, K., Dong, Y., Su, R., Zhang, J. L., Qing, Z., Yang, X. C., Ren, X. X., Ma, Y. B. & He, S. Y. (2016). Effect of nectar reabsorption on plant nectar investment in Cerasus cerasoides. Current Science 110(2), 251-256.
Dutton, E. M., Luo, E. Y., Cembrowski, A. R., Shore, J. S. & Frederickson, M. E. (2016). Three's a crowd: trade-offs between attracting pollinators and ant bodyguards with nectar rewards in Turnera. American Naturalist 188(1), 38-51.
Egan, P. A., Adler, L. S., Irwin, R. E., Farrell, I. W., Palmer-Young, E. C. & Stevenson, P. C. (2018). Crop domestication alters floral reward chemistry with potential consequences for pollinator health. Frontiers in Plant Science 9, 1357.
Findlay, N., Reed, M. L. & Mercer, F. V. (1971). Nectar production in Abutilon III: sugar secretion. Australian Journal of Biological Sciences 24, 665-676.
Ford, H. A., Paton, D. C. & Forde, N. (1979). Birds as pollinators of Australian plants. New Zealand Journal of Botany 17, 509-519.
Galetto, L., Bernardello, L. M. & Juliani, H. R. (1994). Characteristics of secretion of nectar in Pyrostegia venusta (Ker-Gawl.) Miers (Bignoniaceae). New Phytologist 127(3), 465-471.
Galetto, L., Paulina Araujo, F., Grilli, G., Amarilla, L. D., Torres, C. & Sazima, M. (2018). Flower trade-offs derived from nectar investment in female reproduction of two Nicotiana species (Solanaceae). Acta Botanica Brasilica 32(3), 473-478.
Golubov, J., Mandujano, M. C., Montana, C., Lopez-Portillo, J. & Eguiarte, L. E. (2004). The demographic costs of nectar production in the desert perennial Prosopis glandulosa (Mimosoideae): a modular approach. Plant Ecology 170(2), 267-275.
Gottlieb, D., Keasar, T., Shmida, A. & Motro, U. (2005). Possible foraging benefits of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae). Environmental Entomology 34(2), 417-424.
Halpern, S. L., Adler, L. S. & Wink, M. (2010). Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 163(4), 961-971.
Harder, L. D. & Barrett, S. C. H. (1992). The energy cost of bee pollination for Pontederia cordata (Pontederiaceae). Functional Ecology 6(2), 226-233.
Heil, M. (2011). Nectar: generation, regulation and ecological functions. Trends in Plant Sciences 16, 191-200.
Ida, T. Y., Harder, L. D. & Kudo, G. (2012). Effects of defoliation and shading on the physiological cost of reproduction in silky locoweed Oxytropis sericea. Annals of Botany 109(1), 237-246.
Jersakova, J., Johnson, S. D. & Kindlmann, P. (2006). Mechanisms and evolution of deceptive pollination in orchids. Biological Reviews 81(2), 219-235.
Jin, X.-H., Ren, Z.-X., Xu, S.-Z., Wang, H., Li, D.-Z. & Li, Z.-Y. (2014). The evolution of floral deception in Epipactis veratrifolia (Orchidaceae): from indirect defense to pollination. BMC Plant Biology 14, 63.
Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E. & Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences 281, 20132440.
Klein, A.-M., Vaissie're, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303-313.
Kudo, G. & Ida, T. Y. (2010). Carbon source for reproduction in a spring ephemeral herb, Corydalis ambigua (Papaveraceae). Functional Ecology 24(1), 62-69.
Kurilla, A., Toth, T., Dorgai, L., Darula, Z., Lakatos, T., Silhavy, D., Kerenyi, Z. & Dallmann, G. (2020). Nectar- and stigma exudate-specific expression of an acidic chitinase could partially protect certain apple cultivars against fire blight disease. Planta 251(1), 1-16.
Leiss, K. A., Vrieling, K. & Klinkhamer, P. G. L. (2004). Heritability of nectar production in Echium vulgare. Heredity 92(5), 446-451.
Liu, A. Z., Li, D. Z., Wang, H. & Kress, W. J. (2002). Ornithophilous and chiropterophilous pollination in Musa itinerans (Musaceae), a pioneer species in tropical rain forests of Yunnan, southwestern China. Biotropica 34(2), 254-260.
Liu, T., Shah, A., Zha, H.-G., Mohsin, M. & Ishtiaq, M. (2013). Floral nectar composition of an outcrossing bean species Mucuna sempervirens Hemsl (Fabaceae). Pakistan Journal of Botany 45(6), 2079-2084.
Lu, N.-N., Li, X.-H., Li, L. & Zhao, Z.-G. (2015). Variation of nectar production in relation to plant characteristics in protandrous Aconitum gymnandrum. Journal of Plant Ecology 8(2), 122-129.
Luo, E. Y., Ogilvie, J. E. & Thomson, J. D. (2014). Stimulation of flower nectar replenishment by removal: a survey of eleven animal-pollinated plant species. Journal of Pollination Ecology 12, 52-62.
Lüttge, U. (1977). Nectar composition and membrane transport of sugars and amino acids: a review on the present state of nectar research. Apidologie 8, 305-319.
Ma, X. L., Milne, R. I., Zhou, H. X., Fang, J. Y. & Zha, H. G. (2017). Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. Plant Biology 19(5), 749-759.
Ma, X.-L., Milne, R. I., Zhou, H.-X., Song, Y.-Q., Fang, J.-Y. & Zha, H.-G. (2019). Proteomics and post-secretory content adjustment of Nicotiana tabacum nectar. Planta 250(5), 1703-1715.
Mallinger, R. E. & Prasifka, J. R. (2017). Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. Journal of Applied Entomology 141(7), 561-573.
McGregor, S. E. (1976). Insect Pollination of Cultivated Crop Plants. Agricultural Research Service, US Department of Agriculture, Washington, D.C.
Muniz, J. M., Pereira, A. L. C., Valim, J. O. S. & Campos, W. G. (2013). Patterns and mechanisms of temporal resource partitioning among bee species visiting basil (Ocimum basilicum) flowers. Arthropod-Plant Interactions 7(5), 491-502.
Neiland, M. R. M. & Wilcock, C. C. (1998). Fruit set, nectar reward, and rarity in the Orchidaceae. American Journal of Botany 85(12), 1657-1671.
Nepi, M., Grasso, D. A. & Mancuso, S. (2018). Nectar in plant-insect mutualistic relationships: from food reward to partner manipulation. Frontiers in Plant Science 9, 1063.
Nepi, M., Soligo, C., Nocentini, D., Abate, M., Guarnieri, M., Cai, G., Bini, L., Puglia, M., Bianchi, L. & Pacini, E. (2012). Amino acids and protein profile in floral nectar: much more than a simple reward. Flora 207(7), 475-481.
Nepi, M. & Stpiczynska, M. (2007). Nectar resorption and translocation in Cucurbita pepo L. and Platanthera chlorantha Custer (Rchb.). Plant Biology 9(1), 93-100.
Nepi, M. & Stpiczynska, M. (2008). The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften 95(3), 177-184.
Nicolson, S. W. (1995). Direct demonstration of nectar reabsorption in the flowers of Grevillea robusta (Proteaceae). Functional Ecology 9(4), 584-588.
Nicolson, S. W. (2022). Sweet solutions: nectar chemistry and quality. Philosophical Transactions of the Royal Society B: Biological Sciences 377, 20210163.
Ordano, M. & Ornelas, J. F. (2005). The cost of nectar replenishment in two epiphytic bromeliads. Journal of Tropical Ecology 21, 541-547.
Ornelas, J. F. & Lara, C. (2009). Nectar replenishment and pollen receipt interact in their effects on seed production of Penstemon roseus. Oecologia 160(4), 675-685.
Ornelas, J. F., Ordano, M. & Lara, C. (2007). Nectar removal effects on seed production in Moussonia deppeana (Gesneriaceae), a hummingbird-pollinated shrub. Ecoscience 14(1), 117-123.
Pacini, E. & Nepi, M. (2007). Nectar production and presentation. In Nectaries and Nectar (eds S. W. Nicolson, M. Nepi and E. Pacini), pp. 167-214. Springer, Dordrecht.
Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. (2019). Evolutionary ecology of nectar. Annals of Botany 123(2), 247-261.
Park, O. W. (1930). Variation in the concentration of floral nectars. Journal of Economic Entomology 23(2), 440-441.
Park, S. & Thornburg, R. W. (2009). Biochemistry of nectar proteins. Journal of Plant Biology 52(1), 27-34.
Pleasants, J. M. & Chaplin, S. J. (1983). Nectar production rates of Asclepias quadrifolia: causes and consequences of individual variation. Oecologia 59, 232-238.
Prasifka, J. R., Mallinger, R. E., Portlas, Z. M., Hulke, B. S., Fugate, K. K., Paradis, T., Hampton, M. E. & Carter, C. J. (2018). Using nectar-related traits to enhance crop-pollinator interactions. Frontiers in Plant Science 9, 812.
Pyke, G. H. (1981). Optimal nectar production in a hummingbird pollinated plant. Theoretical Population Biology 20, 326-343.
Pyke, G. H. (1991). What does it cost a plant to produce floral nectar? Nature 350, 58-59.
Pyke, G. H. (2016a). Floral nectar: pollinator attraction or manipulation? Trends in Ecology & Evolution 31(5), 339-341.
Pyke, G. H. (2016b). Plant-pollinator co-evolution: it's time to reconnect with optimal foraging theory and evolutionarily stable strategies. Perspectives in Plant Ecology, Evolution and Systematics 19, 70-76.
Pyke, G. H. (2019). Optimal foraging & plant-pollinator co-evolution. In Encyclopedia of Animal Behavior, Second Edition (Volume 2, ed. J. C. Choe), pp. 209-216. Elsevier, Academic Press, London, England.
Pyke, G. H., Kalman, J. R. M., Bordin, D. M., Blanes, L. & Doble, P. A. (2020). Patterns of floral nectar standing crops allow plants to manipulate their pollinators. Scientific Reports 10(1), 1660.
Pyke, G. H., Ren, Z.-X., Trunschke, J., Lunau, K. & Wang, H. (2020). Salvage of floral resources through re-absorption before flower abscission. Scientific Reports 10(1), 15960.
Pyke, G. H. & Waser, N. M. (1981). The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13, 260-270.
Roy, R., Schmitt, A. J., Thomas, J. B. & Carter, C. J. (2017). Review: nectar biology: from molecules to ecosystems. Plant Science 262, 148-164.
Sargent, O. H. (1928). Reactions between birds and plants. Emu 27, 185-192.
Schemske, D. W. (1978). Evolution of reproductive characteristics in Impatiens (Balsaminaceae) the significance of cleistogamy and chasmogamy. Ecology 59(3), 596-613.
Schmitt, A. J., Sathoff, A. E., Holl, C., Bauer, B., Samac, D. A. & Carter, C. J. (2018). The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. Journal of Experimental Botany 69(22), 5587-5597.
Shrestha, M., Dyer, A. G., Dorin, A., Ren, Z. X. & Burd, M. (2020). Rewardlessness in orchids: how frequent and how rewardless? Plant Biology 22(4), 555-561.
Shuel, R. W. (1956). Studies of nectar secretion in excised flowers I. The influence of cultural conditions on quantity and composition of nectar. Canadian Journal of Botany 34, 142-153.
Silva, F. A., Guirgis, A. & Thornburg, R. (2018). Nectar analysis throughout the genus Nicotiana suggests conserved mechanisms of nectar production and biochemical action. Frontiers in Plant Science 9, 1100.
Southwick, E. E. (1984). Photosynthate allocation to floral nectar: a neglected energy investment. Ecology 65, 1775-1779.
Stpiczynska, M. (2003). Incorporation of H-3 sucrose after the resorption of nectar from the spur of Platanthera chlorantha (Custer) Rchb. Canadian Journal of Botany-Revue Canadienne De Botanique 81(9), 927-932.
Tao, Z.-B., Ren, Z.-X., Bernhardt, P., Liang, H., Li, H.-D., Zhao, Y.-H., Wang, H. & Li, D.-Z. (2018). Does reproductive isolation reflect the segregation of color forms in Spiranthes sinensis (Pers.) Ames complex (Orchidaceae) in the Chinese Himalayas? Ecology and Evolution 8(11), 5455-5469.
Thornburg, R. W., Carter, C., Powell, A., Mittler, R., Rizhsky, L. & Horner, H. T. (2003). A major function of the tobacco floral nectary is defense against microbial attack. Plant Systematics and Evolution 238, 211-218.
Tiedge, K. & Lohaus, G. (2017). Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions. PLoS One 12(5), e0176865.
Trelease, W. (1920). Physiology of nectar secretion. American Bee Journal 60, 7-9.
Veits, M., Khait, I., Obolski, U., Zinger, E., Boonman, A., Goldshtein, A., Saban, K., Ben-Dor, U., Estlein, P., Kabat, A., Peretz, D., Ratzersdorfer, I., Krylov, S., Chamovitz, D., Sapir, Y., et al. (2019). Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters 22(9), 1483-1492.
Villamil, N., Boege, K. & Stone, G. N. (2018). Ant-pollinator conflict results in pollinator deterrence but no nectar trade-offs. Frontiers in Plant Science 9, 1093.
Wright, G. A., Baker, D. D., Palmer, M. J., Stabler, D., Mustard, J. A., Power, E. F., Borland, A. M. & Stevenson, P. C. (2013). Caffeine in floral nectar enhances a pollinator's memory of reward. Science 339(6124), 1202-1204.
Zimmerman, M. (1983). Plant reproduction and optimal foraging: experimental manipulations in Delphinium nelsonii. Oikos 41, 57-63.
Zimmerman, M. (1988). Nectar production, flowering phenology, and strategies for pollination. In Plant Reproductive Ecology: Patterns and Strategies (eds J. Lovett-Doust and L. Lovett-Doust), pp. 157-178. Oxford University Press, New York.
Zimmerman, M. & Pyke, G. H. (1988a). Experimental manipulations of Polemonium foliosissimum: effects on subsequent nectar production, seed production and growth. Journal of Ecology 76, 777-789.
Zimmerman, M. & Pyke, G. H. (1988b). Reproduction in Polemonium: assessing the factors limiting seed set. American Naturalist 131, 723-738.

Auteurs

Graham H Pyke (GH)

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
School of Natural Sciences, Macquarie University, Balaclava Rd, North Ryde, 2113, New South Wales, Australia.

Zong-Xin Ren (ZX)

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH