Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors.


Journal

Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 20 05 2023
accepted: 02 07 2023
revised: 20 06 2023
medline: 14 9 2023
pubmed: 19 7 2023
entrez: 18 7 2023
Statut: ppublish

Résumé

After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.

Identifiants

pubmed: 37464053
doi: 10.1007/s00011-023-01766-4
pii: 10.1007/s00011-023-01766-4
pmc: PMC10499706
doi:

Substances chimiques

Receptor, Bradykinin B2 0
Receptor, Bradykinin B1 0
Bradykinin S8TIM42R2W
Receptors, Bradykinin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1583-1601

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 15/03541-8
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 14/27198-8
Organisme : Deutscher Akademischer Austauschdienst
ID : 001
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Finance Code 001

Informations de copyright

© 2023. The Author(s).

Références

Yelin E, Weinstein S, King T. An update on the burden of musculoskeletal diseases in the U.S. Semin Arthritis Rheum. 2019;49(1):1–2.
pubmed: 31133279 doi: 10.1016/j.semarthrit.2019.04.010
Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sport Med. 2005;33(5):745–64.
doi: 10.1177/0363546505274714
Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.
pubmed: 19553225 doi: 10.1136/bjsm.2009.060582
Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA injury study. Am J Sports Med. 2013;41(2):327–35.
pubmed: 23263293 doi: 10.1177/0363546512470634
Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med. 2002;12(1):3–5.
pubmed: 11854581 doi: 10.1097/00042752-200201000-00004
Järvinen TAH, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3(4):337–45.
pubmed: 24596699 doi: 10.32098/mltj.04.2013.16
Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):57–62.
doi: 10.1152/ajpregu.00454.2004
Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y. Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim-sulfamethoxazole. Nitric Oxide Biol Chem. 2002;7(4):283–8.
doi: 10.1016/S1089-8603(02)00110-6
Webb NJA, Myers CR, Watson CJ, Bottomley MJ, Brenchley PEC. Activated human neutrophils express vascular endothelial growth factor (vegf). Cytokine. 1998;10(4):254–7.
pubmed: 9617569 doi: 10.1006/cyto.1997.0297
Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Understanding the process of fibrosis in duchenne muscular dystrophy. Biomed Res Int. 2014;2014:1–11.
doi: 10.1155/2014/965631
Stilhano RS, et al. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS ONE. 2017;12(10): e0186719.
pubmed: 29059221 pmcid: 5653346 doi: 10.1371/journal.pone.0186719
Murphy AM, Wong AL, Bezuhly M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenes Tissue Repair. 2015;8(1):1–7.
doi: 10.1186/s13069-015-0023-z
Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol Rev. 1992;44(1):1–80.
pubmed: 1313585
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol. 2007;3(4):208–21.
pubmed: 17389890 doi: 10.1038/ncpneph0444
Figueroa CD, Dietze G, Muller-Esterl W. Immunolocalization of bradykinin B2 receptors on skeletal muscle cells. Diabetes. 1996;45(1 SUPPL.):24–8.
doi: 10.2337/diab.45.1.S24
Acuña MJ, et al. Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. J Cell Commun Signal. 2018;12(3):589–601.
pubmed: 29250740 doi: 10.1007/s12079-017-0439-x
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77.
pubmed: 15734727 doi: 10.1124/pr.57.1.2
Qadri F, Bader M. Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets. 2018;22(1):31–44.
pubmed: 29168929 doi: 10.1080/14728222.2018.1409724
Yao YY, Yin H, Shen B, Chao L, Chao J. Tissue Kallikrein and Kinin infusion rescues failing myocardium after myocardial infarction. J Card Fail. 2007;13(7):588–96.
pubmed: 17826650 pmcid: 4519013 doi: 10.1016/j.cardfail.2007.04.009
Sancho-Bru P, et al. Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology. 2007;133(6):2019–28.
pubmed: 18054572 doi: 10.1053/j.gastro.2007.09.023
Kakoki M, et al. Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice. Proc Natl Acad Sci USA. 2010;107(22):10190–5.
pubmed: 20479236 pmcid: 2890475 doi: 10.1073/pnas.1005144107
Liu Y, et al. Blockade of endogenous tissue kallikrein aggravates renal injury by enhancing oxidative stress and inhibiting matrix degradation. Am J Physiol Ren Physiol. 2010;298(4):1033–40.
doi: 10.1152/ajprenal.00518.2009
Emanueli C, et al. Receptor knockout mice. 1999;2359–2366.
Schanstra JP, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002;110(3):371–9.
pubmed: 12163456 pmcid: 151090 doi: 10.1172/JCI0215493
Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L. Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem. 2010;391(4):345–55.
pubmed: 20180644 doi: 10.1515/bc.2010.042
Tu L, et al. Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther. 2008;19(4):318–30.
pubmed: 18402547 doi: 10.1089/hum.2007.138
Zhu D, Zhang L, Cheng L, Ren L, Tang J, Sun D. Pancreatic kininogenase ameliorates renal fibrosis in streptozotocin induced-diabetic nephropathy rat. Kidney Blood Press Res. 2016;41(1):9–17.
pubmed: 26751697 doi: 10.1159/000368542
Novak EW-HTKML. Macrophage activation and skeletal muscle healing following traumatic injury. J Pathol. 2014;232:344–55.
pubmed: 24255005 pmcid: 4019602 doi: 10.1002/path.4301
Berton G, Gordon S. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology. 1983;49(4):705–15.
pubmed: 6307868 pmcid: 1454314
Lee F, et al. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sci USA. 1985;82(13):4360–4.
pubmed: 3925454 pmcid: 390413 doi: 10.1073/pnas.82.13.4360
Springer ML, Ozawa CR, Blau HM. Transient production of α-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cell Motil Cytoskeleton. 2002;51(4):177–86.
pubmed: 11977092 doi: 10.1002/cm.10022
Mondrinos MJ, et al. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. Sci Adv. 2021;7(11):9446–58.
doi: 10.1126/sciadv.abe9446
Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284(4):517–24.
pubmed: 27479876 doi: 10.1111/febs.13827
Chen X, et al. Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell. 2005;16(7):3140–51.
pubmed: 15843428 pmcid: 1165399 doi: 10.1091/mbc.e05-03-0218
Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010.
pubmed: 17540178 pmcid: 2718740 doi: 10.1016/j.cell.2007.03.044
Dalbis A, Couteaux R, Janmot C, Roulet A, Mira J-C. Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem. 1988;174(1):103–10.
pubmed: 3371354 doi: 10.1111/j.1432-1033.1988.tb14068.x
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal muscle pathophysiology: the emerging role of spermine oxidase and spermidine. Med Sci. 2018;6(1):14.
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skeletal Muscle. 2015;5(1):1–14.
doi: 10.1186/s13395-015-0046-6
Chao J, et al. Kinin infusion prevents renal inflammation, apoptosis, and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension. 2007;49(3):490–7.
pubmed: 17224475 doi: 10.1161/01.HYP.0000255925.01707.eb
Guevara-Lora I. Kinin-mediated inflammation in neurodegenerative disorders. Neurochem Int. 2012;61(1):72–8.
pubmed: 22554400 doi: 10.1016/j.neuint.2012.04.013
Hachana S, Bhat M, Sénécal J, Huppé-Gourgues F, Couture R, Vaucher E. Expression, distribution and function of kinin B1 receptor in the rat diabetic retina. Br J Pharmacol. 2018;175(6):968–83.
pubmed: 29285756 pmcid: 5825301 doi: 10.1111/bph.14138
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-b1 during skeletal muscle regeneration. Cell Biol Int. 2017. https://doi.org/10.1002/cbin.10725 .
doi: 10.1002/cbin.10725 pubmed: 28035727
Ábrigo J, et al. TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy. Biol Chem. 2018;399(3):253–64.
pubmed: 29140787 doi: 10.1515/hsz-2017-0217
Cabello-Verrugio C, Rivera JC, Garcia D. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system. Curr Opin Clin Nutr Metab Care. 2017;20(3):158–63.
pubmed: 28207424 doi: 10.1097/MCO.0000000000000361
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β signalling network in muscle development, adaptation and disease. In: Advances in experimental medicine and biology, vol. 900. Springer New York LLC; 2016. p. 97–131.
Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202.
pubmed: 21740331 pmcid: 4408550 doi: 10.3109/08977194.2011.595714
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017. https://doi.org/10.3389/fphar.2017.00461 .
doi: 10.3389/fphar.2017.00461 pubmed: 28769795 pmcid: 5509761
Hu HH, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.
pubmed: 30017632 doi: 10.1016/j.cbi.2018.07.008
Cohen TV, Kollias HD, Liu N, Ward CW, Wagner KR. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593(11):2479–97.
pubmed: 25854148 pmcid: 4461410 doi: 10.1113/JP270201
Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC. Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol. 2006;26(16):6248–60.
pubmed: 16880533 pmcid: 1592807 doi: 10.1128/MCB.00384-06
Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.
pubmed: 15851777 doi: 10.1177/0363546505274714
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.
pubmed: 8314838 doi: 10.1083/jcb.122.1.103
Gabbiani G. 50 years of myofibroblasts: how the myofibroblast concept evolved. Methods Mol Biol. 2021;2299:1–5.
pubmed: 34028731 doi: 10.1007/978-1-0716-1382-5_1
Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts.
Babai F, Musevi-Aghdam J, Schurch W, Royal A, Gabbiani G. Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos I. Skeletal muscle. Differentiation. 1990;44(2):132–42.
pubmed: 2283002 doi: 10.1111/j.1432-0436.1990.tb00546.x
Springer ML, Ozawa CR, Blau HM. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cell Motil Cytoskeleton. 2002;51(4):177–86.
pubmed: 11977092 doi: 10.1002/cm.10022
Murray IR, et al. αv integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat Commun. 2017;8(1):1–13.
doi: 10.1038/s41467-017-01097-z
Wu J, Ren B, Wang D, Lin H. Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis. 2022;13(8):1–11.
doi: 10.1038/s41419-022-05142-8
Castiglioni A, et al. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS ONE. 2015;10(6): e0128094.
pubmed: 26039259 pmcid: 4454513 doi: 10.1371/journal.pone.0128094
Panduro M, Benoist C, Mathis D. Tissue tregs. Annu Rev Immunol. 2016;34(1):609–33.
pubmed: 27168246 pmcid: 4942112 doi: 10.1146/annurev-immunol-032712-095948
Burzyn D, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155(6):1282–95.
pubmed: 24315098 pmcid: 3894749 doi: 10.1016/j.cell.2013.10.054
Göbel K, et al. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun. 2011;36(2):106–14.
pubmed: 21216565 doi: 10.1016/j.jaut.2010.11.004
Dutra RC, et al. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS ONE. 2011;6(11): e27875.
pubmed: 22132157 pmcid: 3222659 doi: 10.1371/journal.pone.0027875
Arnold L, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.
pubmed: 17485518 pmcid: 2118577 doi: 10.1084/jem.20070075
Martins L, et al. Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. Stem Cell Res Ther. 2020;11(1):1–12.
doi: 10.1186/s13287-020-01992-1
Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet. 2011;20(4):790–805.
pubmed: 21118895 doi: 10.1093/hmg/ddq523
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62.
pubmed: 26982353 pmcid: 4794754 doi: 10.1016/j.immuni.2016.02.015
Sass FA, et al. Immunology guides skeletal muscle regeneration. Int J Mol Sci. 2018;19(3):835.
pubmed: 29534011 pmcid: 5877696 doi: 10.3390/ijms19030835
Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34(1):82–100.
pubmed: 25340307 doi: 10.3109/08830185.2014.969421
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Compar Physiol. 2010;298(5):R1173–87.
doi: 10.1152/ajpregu.00735.2009
Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem. 2013;288(3):1489–99.
pubmed: 23184935 doi: 10.1074/jbc.M112.419788
Borselli C, et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci USA. 2010;107(8):3287–92.
pubmed: 19966309 pmcid: 2840452 doi: 10.1073/pnas.0903875106
Pandya NM, Dhalla NS, Santani DD. Angiogenesis—a new target for future therapy. Vascul Pharmacol. 2006;44(5):265–74.
pubmed: 16545987 doi: 10.1016/j.vph.2006.01.005
Hudlicka O. Microcirculation in skeletal muscle. Muscles Ligaments Tendons J. 2011;1(1):3–11.
pubmed: 23738238 pmcid: 3666465
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Circ Physiol. 2016;310(3):H326–36.
doi: 10.1152/ajpheart.00635.2015
Zhou AL, Egginton S, Brown MD, Hudlická O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec. 1998;252(1):49–63.
pubmed: 9737744 doi: 10.1002/(SICI)1097-0185(199809)252:1<49::AID-AR6>3.0.CO;2-9
Ebina T, et al. Physiological angiogenesis in electrically stimulated skeletal muscle in rabbits: characterization of capillary sprouting by ultrastructural 3-D reconstruction study. Pathol Int. 2002;52(11):702–12.
pubmed: 12685547 doi: 10.1046/j.1440-1827.2002.01413.x
Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.
pubmed: 10371499 doi: 10.1038/9467
Tang K, Breen EC, Gerber HP, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18(1):63–9.
pubmed: 15084712 doi: 10.1152/physiolgenomics.00023.2004
Olfert IM, Birot O. Importance of anti-angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation. 2011;18(4):316–30.
pubmed: 21418382 doi: 10.1111/j.1549-8719.2011.00092.x
Colman R. Regulation of angiogenesis by the Kallikrein-Kinin system. Curr Pharm Des. 2006;12(21):2599–607.
pubmed: 16842160 doi: 10.2174/138161206777698710
Von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA. 2013;110(41):16474–9.
doi: 10.1073/pnas.1307680110
Sambasivan R, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011;138(17):3647–56.
pubmed: 21828093 doi: 10.1242/dev.067587
Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–46.
pubmed: 21828092 pmcid: 3152922 doi: 10.1242/dev.067595
Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166(3):347–57.
pubmed: 15277541 pmcid: 2172269 doi: 10.1083/jcb.200312007
Rudnicki MA, Schnegelsberg PNJ, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993;75(7):1351–9.
pubmed: 8269513 doi: 10.1016/0092-8674(93)90621-V
Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.
pubmed: 23303905 pmcid: 4073943 doi: 10.1152/physrev.00043.2011
Kuang S, Rudnicki MA. The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med. 2008;14(2):82–91.
pubmed: 18218339 doi: 10.1016/j.molmed.2007.12.004
Bentzinger CF, Von Maltzahn J, Rudnicki MA. Extrinsic regulation of satellite cell specification. Stem Cell Res Ther. 2010;1(3):27.
pubmed: 20804582 pmcid: 2941119 doi: 10.1186/scrt27
Yamamoto M, et al. Loss of MyoD and Myf5 in skeletal muscle stem cells results in altered myogenic programming and failed regeneration. Stem Cell Reports. 2018;10(3):956.
pubmed: 29478898 pmcid: 5918368 doi: 10.1016/j.stemcr.2018.01.027
Pinniger GJ, Lavin T, Bakker AJ. Skeletal muscle weakness caused by carrageenan-induced inflammation. Muscle Nerve. 2012;46(3):413–20.
pubmed: 22907233 doi: 10.1002/mus.23318
Mori T, et al. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions. J Physiol Sci. 2018;68(4):483–92.
pubmed: 28667588 doi: 10.1007/s12576-017-0553-9
Emanueli C, et al. Prevention of diabetes-induced microangiopathy by human tissue kallikrein gene transfer. Circulation. 2002;106(8):993–9.
pubmed: 12186806 doi: 10.1161/01.CIR.0000027104.33206.C8
Reis FCG, et al. Deletion of Kinin B2 receptor alters muscle metabolism and exercise performance. PLoS ONE. 2015;10(8): e0134844.
pubmed: 26302153 pmcid: 4547798 doi: 10.1371/journal.pone.0134844
Parreiras-e-Silva LT, et al. The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci. 2014;127(3):185–94.
doi: 10.1042/CS20130358
Pesquero JB, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci USA. 2000;97(14):8140–5.
pubmed: 10859349 pmcid: 16683 doi: 10.1073/pnas.120035997
Borkowski JA, et al. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem. 1995;270(23):13706–10.
pubmed: 7775424 doi: 10.1074/jbc.270.23.13706
Cayla C, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J. 2007;21(8):1689–98.
pubmed: 17289925 doi: 10.1096/fj.06-7175com
Martins L, Martin PKM, Han SW. Angiogenic properties of mesenchymal stem cells in a mouse model of limb ischemia. Methods Mol Biol. 2014;1213:147–69.
pubmed: 25173381 doi: 10.1007/978-1-4939-1453-1_13

Auteurs

Leonardo Martins (L)

Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAN), 3a Tylna St., 90-364, Łódź, Poland. lmartin@cbm.pan.pl.
Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil. lmartin@cbm.pan.pl.
Department of Biochemistry and Molecular Biology, Federal University of São Paulo, Rua Três de Maio 100, 4th Floor, São Paulo, 04044-020, Brazil. lmartin@cbm.pan.pl.

Weslley Wallace Amorim (WW)

Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.

Marcos Fernandes Gregnani (MF)

Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.

Ronaldo de Carvalho Araújo (R)

Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.

Fatimunnisa Qadri (F)

Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.

Michael Bader (M)

Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785, Berlin, Germany.

João Bosco Pesquero (JB)

Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil. jbpesquero@unifesp.br.
Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 6th Floor, São Paulo, 04023-062, Brazil. jbpesquero@unifesp.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH