Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors.
Contusion
Fibrosis
Injury
Kinin
Myogenesis
Skeletal muscle
Journal
Inflammation research : official journal of the European Histamine Research Society ... [et al.]
ISSN: 1420-908X
Titre abrégé: Inflamm Res
Pays: Switzerland
ID NLM: 9508160
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
20
05
2023
accepted:
02
07
2023
revised:
20
06
2023
medline:
14
9
2023
pubmed:
19
7
2023
entrez:
18
7
2023
Statut:
ppublish
Résumé
After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.
Identifiants
pubmed: 37464053
doi: 10.1007/s00011-023-01766-4
pii: 10.1007/s00011-023-01766-4
pmc: PMC10499706
doi:
Substances chimiques
Receptor, Bradykinin B2
0
Receptor, Bradykinin B1
0
Bradykinin
S8TIM42R2W
Receptors, Bradykinin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1583-1601Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 15/03541-8
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 14/27198-8
Organisme : Deutscher Akademischer Austauschdienst
ID : 001
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Finance Code 001
Informations de copyright
© 2023. The Author(s).
Références
Yelin E, Weinstein S, King T. An update on the burden of musculoskeletal diseases in the U.S. Semin Arthritis Rheum. 2019;49(1):1–2.
pubmed: 31133279
doi: 10.1016/j.semarthrit.2019.04.010
Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sport Med. 2005;33(5):745–64.
doi: 10.1177/0363546505274714
Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.
pubmed: 19553225
doi: 10.1136/bjsm.2009.060582
Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA injury study. Am J Sports Med. 2013;41(2):327–35.
pubmed: 23263293
doi: 10.1177/0363546512470634
Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med. 2002;12(1):3–5.
pubmed: 11854581
doi: 10.1097/00042752-200201000-00004
Järvinen TAH, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3(4):337–45.
pubmed: 24596699
doi: 10.32098/mltj.04.2013.16
Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):57–62.
doi: 10.1152/ajpregu.00454.2004
Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y. Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim-sulfamethoxazole. Nitric Oxide Biol Chem. 2002;7(4):283–8.
doi: 10.1016/S1089-8603(02)00110-6
Webb NJA, Myers CR, Watson CJ, Bottomley MJ, Brenchley PEC. Activated human neutrophils express vascular endothelial growth factor (vegf). Cytokine. 1998;10(4):254–7.
pubmed: 9617569
doi: 10.1006/cyto.1997.0297
Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Understanding the process of fibrosis in duchenne muscular dystrophy. Biomed Res Int. 2014;2014:1–11.
doi: 10.1155/2014/965631
Stilhano RS, et al. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS ONE. 2017;12(10): e0186719.
pubmed: 29059221
pmcid: 5653346
doi: 10.1371/journal.pone.0186719
Murphy AM, Wong AL, Bezuhly M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenes Tissue Repair. 2015;8(1):1–7.
doi: 10.1186/s13069-015-0023-z
Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol Rev. 1992;44(1):1–80.
pubmed: 1313585
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol. 2007;3(4):208–21.
pubmed: 17389890
doi: 10.1038/ncpneph0444
Figueroa CD, Dietze G, Muller-Esterl W. Immunolocalization of bradykinin B2 receptors on skeletal muscle cells. Diabetes. 1996;45(1 SUPPL.):24–8.
doi: 10.2337/diab.45.1.S24
Acuña MJ, et al. Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. J Cell Commun Signal. 2018;12(3):589–601.
pubmed: 29250740
doi: 10.1007/s12079-017-0439-x
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77.
pubmed: 15734727
doi: 10.1124/pr.57.1.2
Qadri F, Bader M. Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets. 2018;22(1):31–44.
pubmed: 29168929
doi: 10.1080/14728222.2018.1409724
Yao YY, Yin H, Shen B, Chao L, Chao J. Tissue Kallikrein and Kinin infusion rescues failing myocardium after myocardial infarction. J Card Fail. 2007;13(7):588–96.
pubmed: 17826650
pmcid: 4519013
doi: 10.1016/j.cardfail.2007.04.009
Sancho-Bru P, et al. Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology. 2007;133(6):2019–28.
pubmed: 18054572
doi: 10.1053/j.gastro.2007.09.023
Kakoki M, et al. Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice. Proc Natl Acad Sci USA. 2010;107(22):10190–5.
pubmed: 20479236
pmcid: 2890475
doi: 10.1073/pnas.1005144107
Liu Y, et al. Blockade of endogenous tissue kallikrein aggravates renal injury by enhancing oxidative stress and inhibiting matrix degradation. Am J Physiol Ren Physiol. 2010;298(4):1033–40.
doi: 10.1152/ajprenal.00518.2009
Emanueli C, et al. Receptor knockout mice. 1999;2359–2366.
Schanstra JP, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002;110(3):371–9.
pubmed: 12163456
pmcid: 151090
doi: 10.1172/JCI0215493
Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L. Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem. 2010;391(4):345–55.
pubmed: 20180644
doi: 10.1515/bc.2010.042
Tu L, et al. Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther. 2008;19(4):318–30.
pubmed: 18402547
doi: 10.1089/hum.2007.138
Zhu D, Zhang L, Cheng L, Ren L, Tang J, Sun D. Pancreatic kininogenase ameliorates renal fibrosis in streptozotocin induced-diabetic nephropathy rat. Kidney Blood Press Res. 2016;41(1):9–17.
pubmed: 26751697
doi: 10.1159/000368542
Novak EW-HTKML. Macrophage activation and skeletal muscle healing following traumatic injury. J Pathol. 2014;232:344–55.
pubmed: 24255005
pmcid: 4019602
doi: 10.1002/path.4301
Berton G, Gordon S. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology. 1983;49(4):705–15.
pubmed: 6307868
pmcid: 1454314
Lee F, et al. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sci USA. 1985;82(13):4360–4.
pubmed: 3925454
pmcid: 390413
doi: 10.1073/pnas.82.13.4360
Springer ML, Ozawa CR, Blau HM. Transient production of α-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cell Motil Cytoskeleton. 2002;51(4):177–86.
pubmed: 11977092
doi: 10.1002/cm.10022
Mondrinos MJ, et al. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. Sci Adv. 2021;7(11):9446–58.
doi: 10.1126/sciadv.abe9446
Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284(4):517–24.
pubmed: 27479876
doi: 10.1111/febs.13827
Chen X, et al. Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell. 2005;16(7):3140–51.
pubmed: 15843428
pmcid: 1165399
doi: 10.1091/mbc.e05-03-0218
Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010.
pubmed: 17540178
pmcid: 2718740
doi: 10.1016/j.cell.2007.03.044
Dalbis A, Couteaux R, Janmot C, Roulet A, Mira J-C. Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem. 1988;174(1):103–10.
pubmed: 3371354
doi: 10.1111/j.1432-1033.1988.tb14068.x
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal muscle pathophysiology: the emerging role of spermine oxidase and spermidine. Med Sci. 2018;6(1):14.
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skeletal Muscle. 2015;5(1):1–14.
doi: 10.1186/s13395-015-0046-6
Chao J, et al. Kinin infusion prevents renal inflammation, apoptosis, and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension. 2007;49(3):490–7.
pubmed: 17224475
doi: 10.1161/01.HYP.0000255925.01707.eb
Guevara-Lora I. Kinin-mediated inflammation in neurodegenerative disorders. Neurochem Int. 2012;61(1):72–8.
pubmed: 22554400
doi: 10.1016/j.neuint.2012.04.013
Hachana S, Bhat M, Sénécal J, Huppé-Gourgues F, Couture R, Vaucher E. Expression, distribution and function of kinin B1 receptor in the rat diabetic retina. Br J Pharmacol. 2018;175(6):968–83.
pubmed: 29285756
pmcid: 5825301
doi: 10.1111/bph.14138
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-b1 during skeletal muscle regeneration. Cell Biol Int. 2017. https://doi.org/10.1002/cbin.10725 .
doi: 10.1002/cbin.10725
pubmed: 28035727
Ábrigo J, et al. TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy. Biol Chem. 2018;399(3):253–64.
pubmed: 29140787
doi: 10.1515/hsz-2017-0217
Cabello-Verrugio C, Rivera JC, Garcia D. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system. Curr Opin Clin Nutr Metab Care. 2017;20(3):158–63.
pubmed: 28207424
doi: 10.1097/MCO.0000000000000361
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β signalling network in muscle development, adaptation and disease. In: Advances in experimental medicine and biology, vol. 900. Springer New York LLC; 2016. p. 97–131.
Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202.
pubmed: 21740331
pmcid: 4408550
doi: 10.3109/08977194.2011.595714
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017. https://doi.org/10.3389/fphar.2017.00461 .
doi: 10.3389/fphar.2017.00461
pubmed: 28769795
pmcid: 5509761
Hu HH, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.
pubmed: 30017632
doi: 10.1016/j.cbi.2018.07.008
Cohen TV, Kollias HD, Liu N, Ward CW, Wagner KR. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593(11):2479–97.
pubmed: 25854148
pmcid: 4461410
doi: 10.1113/JP270201
Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC. Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol. 2006;26(16):6248–60.
pubmed: 16880533
pmcid: 1592807
doi: 10.1128/MCB.00384-06
Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.
pubmed: 15851777
doi: 10.1177/0363546505274714
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.
pubmed: 8314838
doi: 10.1083/jcb.122.1.103
Gabbiani G. 50 years of myofibroblasts: how the myofibroblast concept evolved. Methods Mol Biol. 2021;2299:1–5.
pubmed: 34028731
doi: 10.1007/978-1-0716-1382-5_1
Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts.
Babai F, Musevi-Aghdam J, Schurch W, Royal A, Gabbiani G. Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos I. Skeletal muscle. Differentiation. 1990;44(2):132–42.
pubmed: 2283002
doi: 10.1111/j.1432-0436.1990.tb00546.x
Springer ML, Ozawa CR, Blau HM. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cell Motil Cytoskeleton. 2002;51(4):177–86.
pubmed: 11977092
doi: 10.1002/cm.10022
Murray IR, et al. αv integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat Commun. 2017;8(1):1–13.
doi: 10.1038/s41467-017-01097-z
Wu J, Ren B, Wang D, Lin H. Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis. 2022;13(8):1–11.
doi: 10.1038/s41419-022-05142-8
Castiglioni A, et al. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS ONE. 2015;10(6): e0128094.
pubmed: 26039259
pmcid: 4454513
doi: 10.1371/journal.pone.0128094
Panduro M, Benoist C, Mathis D. Tissue tregs. Annu Rev Immunol. 2016;34(1):609–33.
pubmed: 27168246
pmcid: 4942112
doi: 10.1146/annurev-immunol-032712-095948
Burzyn D, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155(6):1282–95.
pubmed: 24315098
pmcid: 3894749
doi: 10.1016/j.cell.2013.10.054
Göbel K, et al. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun. 2011;36(2):106–14.
pubmed: 21216565
doi: 10.1016/j.jaut.2010.11.004
Dutra RC, et al. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS ONE. 2011;6(11): e27875.
pubmed: 22132157
pmcid: 3222659
doi: 10.1371/journal.pone.0027875
Arnold L, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.
pubmed: 17485518
pmcid: 2118577
doi: 10.1084/jem.20070075
Martins L, et al. Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. Stem Cell Res Ther. 2020;11(1):1–12.
doi: 10.1186/s13287-020-01992-1
Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet. 2011;20(4):790–805.
pubmed: 21118895
doi: 10.1093/hmg/ddq523
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62.
pubmed: 26982353
pmcid: 4794754
doi: 10.1016/j.immuni.2016.02.015
Sass FA, et al. Immunology guides skeletal muscle regeneration. Int J Mol Sci. 2018;19(3):835.
pubmed: 29534011
pmcid: 5877696
doi: 10.3390/ijms19030835
Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34(1):82–100.
pubmed: 25340307
doi: 10.3109/08830185.2014.969421
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Compar Physiol. 2010;298(5):R1173–87.
doi: 10.1152/ajpregu.00735.2009
Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem. 2013;288(3):1489–99.
pubmed: 23184935
doi: 10.1074/jbc.M112.419788
Borselli C, et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci USA. 2010;107(8):3287–92.
pubmed: 19966309
pmcid: 2840452
doi: 10.1073/pnas.0903875106
Pandya NM, Dhalla NS, Santani DD. Angiogenesis—a new target for future therapy. Vascul Pharmacol. 2006;44(5):265–74.
pubmed: 16545987
doi: 10.1016/j.vph.2006.01.005
Hudlicka O. Microcirculation in skeletal muscle. Muscles Ligaments Tendons J. 2011;1(1):3–11.
pubmed: 23738238
pmcid: 3666465
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Circ Physiol. 2016;310(3):H326–36.
doi: 10.1152/ajpheart.00635.2015
Zhou AL, Egginton S, Brown MD, Hudlická O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec. 1998;252(1):49–63.
pubmed: 9737744
doi: 10.1002/(SICI)1097-0185(199809)252:1<49::AID-AR6>3.0.CO;2-9
Ebina T, et al. Physiological angiogenesis in electrically stimulated skeletal muscle in rabbits: characterization of capillary sprouting by ultrastructural 3-D reconstruction study. Pathol Int. 2002;52(11):702–12.
pubmed: 12685547
doi: 10.1046/j.1440-1827.2002.01413.x
Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.
pubmed: 10371499
doi: 10.1038/9467
Tang K, Breen EC, Gerber HP, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18(1):63–9.
pubmed: 15084712
doi: 10.1152/physiolgenomics.00023.2004
Olfert IM, Birot O. Importance of anti-angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation. 2011;18(4):316–30.
pubmed: 21418382
doi: 10.1111/j.1549-8719.2011.00092.x
Colman R. Regulation of angiogenesis by the Kallikrein-Kinin system. Curr Pharm Des. 2006;12(21):2599–607.
pubmed: 16842160
doi: 10.2174/138161206777698710
Von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA. 2013;110(41):16474–9.
doi: 10.1073/pnas.1307680110
Sambasivan R, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011;138(17):3647–56.
pubmed: 21828093
doi: 10.1242/dev.067587
Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–46.
pubmed: 21828092
pmcid: 3152922
doi: 10.1242/dev.067595
Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166(3):347–57.
pubmed: 15277541
pmcid: 2172269
doi: 10.1083/jcb.200312007
Rudnicki MA, Schnegelsberg PNJ, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993;75(7):1351–9.
pubmed: 8269513
doi: 10.1016/0092-8674(93)90621-V
Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.
pubmed: 23303905
pmcid: 4073943
doi: 10.1152/physrev.00043.2011
Kuang S, Rudnicki MA. The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med. 2008;14(2):82–91.
pubmed: 18218339
doi: 10.1016/j.molmed.2007.12.004
Bentzinger CF, Von Maltzahn J, Rudnicki MA. Extrinsic regulation of satellite cell specification. Stem Cell Res Ther. 2010;1(3):27.
pubmed: 20804582
pmcid: 2941119
doi: 10.1186/scrt27
Yamamoto M, et al. Loss of MyoD and Myf5 in skeletal muscle stem cells results in altered myogenic programming and failed regeneration. Stem Cell Reports. 2018;10(3):956.
pubmed: 29478898
pmcid: 5918368
doi: 10.1016/j.stemcr.2018.01.027
Pinniger GJ, Lavin T, Bakker AJ. Skeletal muscle weakness caused by carrageenan-induced inflammation. Muscle Nerve. 2012;46(3):413–20.
pubmed: 22907233
doi: 10.1002/mus.23318
Mori T, et al. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions. J Physiol Sci. 2018;68(4):483–92.
pubmed: 28667588
doi: 10.1007/s12576-017-0553-9
Emanueli C, et al. Prevention of diabetes-induced microangiopathy by human tissue kallikrein gene transfer. Circulation. 2002;106(8):993–9.
pubmed: 12186806
doi: 10.1161/01.CIR.0000027104.33206.C8
Reis FCG, et al. Deletion of Kinin B2 receptor alters muscle metabolism and exercise performance. PLoS ONE. 2015;10(8): e0134844.
pubmed: 26302153
pmcid: 4547798
doi: 10.1371/journal.pone.0134844
Parreiras-e-Silva LT, et al. The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci. 2014;127(3):185–94.
doi: 10.1042/CS20130358
Pesquero JB, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci USA. 2000;97(14):8140–5.
pubmed: 10859349
pmcid: 16683
doi: 10.1073/pnas.120035997
Borkowski JA, et al. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem. 1995;270(23):13706–10.
pubmed: 7775424
doi: 10.1074/jbc.270.23.13706
Cayla C, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J. 2007;21(8):1689–98.
pubmed: 17289925
doi: 10.1096/fj.06-7175com
Martins L, Martin PKM, Han SW. Angiogenic properties of mesenchymal stem cells in a mouse model of limb ischemia. Methods Mol Biol. 2014;1213:147–69.
pubmed: 25173381
doi: 10.1007/978-1-4939-1453-1_13