Clinical effects of Lewy body pathology in cognitively impaired individuals.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
08 2023
Historique:
received: 21 01 2023
accepted: 08 06 2023
medline: 17 8 2023
pubmed: 19 7 2023
entrez: 18 7 2023
Statut: ppublish

Résumé

There is poor knowledge about the clinical effects of Lewy body (LB) pathology in patients with cognitive impairment, especially when coexisting with Alzheimer's disease (AD) pathology (amyloid-β and tau). Using a seed amplification assay, we analyzed cerebrospinal fluid for misfolded LB-associated α-synuclein in 883 memory clinic patients with mild cognitive impairment or dementia from the BioFINDER study. Twenty-three percent had LB pathology, of which only 21% fulfilled clinical criteria of Parkinson's disease or dementia with Lewy bodies at baseline. Among these LB-positive patients, 48% had AD pathology. Fifty-four percent had AD pathology in the whole sample (17% of mild cognitive impairment and 24% of patients with dementia were also LB-positive). When examining independent cross-sectional effects, LB pathology but not amyloid-β or tau, was associated with hallucinations and worse attention/executive, visuospatial and motor function. LB pathology was also associated with faster longitudinal decline in all examined cognitive functions, independent of amyloid-β, tau, cognitive stage and a baseline diagnosis of dementia with Lewy bodies/Parkinson's disease. LB status provides a better precision-medicine approach to predict clinical trajectories independent of AD biomarkers and a clinical diagnosis, which could have implications for the clinical management of cognitive impairment and the design of AD and LB drug trials.

Identifiants

pubmed: 37464058
doi: 10.1038/s41591-023-02449-7
pii: 10.1038/s41591-023-02449-7
pmc: PMC10427416
doi:

Substances chimiques

Amyloid beta-Peptides 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1964-1970

Informations de copyright

© 2023. The Author(s).

Références

Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).
pubmed: 34083813
Taylor, J. P. et al. New evidence on the management of Lewy body dementia. Lancet Neurol. 19, 157–169 (2020).
pubmed: 31519472
DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).
pubmed: 31375134 pmcid: 6679484
Dubois, B. et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 20, 484–496 (2021).
pubmed: 33933186 pmcid: 8339877
Bellomo, G. et al. α-Synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 99, 195–205 (2022).
pubmed: 35914941
Bargar, C. et al. Streamlined α-synuclein RT-QuIC assay for various biospecimens in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 9, 62 (2021).
pubmed: 33827706 pmcid: 8028088
Hall, S. et al. Performance of α-Synuclein RT-QuIC in relation to neuropathological staging of Lewy body disease. Acta Neuropathol. Commun. 10, 90 (2022).
pubmed: 35733234 pmcid: 9219141
Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).
pubmed: 32342188 pmcid: 7299922
Arnold, M. R. et al. α-Synuclein seed amplification in CSF and brain from patients with different brain distributions of pathological α-synuclein in the context of co-pathology and non-LBD diagnoses. Ann. Neurol. 92, 650–662 (2022).
pubmed: 35808984
Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).
pubmed: 37059509
Kang, U. J. et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 34, 536–544 (2019).
pubmed: 30840785 pmcid: 6519150
Poggiolini, I. et al. RT-QuIC using C-terminally truncated α-synuclein forms detects differences in seeding propensity of different brain regions from synucleinopathies. Biomolecules https://doi.org/10.3390/biom11060820 (2021).
Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606 pmcid: 5958625
Attems, J. et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol. 141, 159–172 (2021).
pubmed: 33399945 pmcid: 7847437
Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).
pubmed: 26474316
McKeith, I. G. et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 94, 743–755 (2020).
pubmed: 32241955 pmcid: 7274845
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).
pubmed: 16237129
Ferman, T. J. et al. The limbic and neocortical contribution of α-synuclein, tau, and amyloid β to disease duration in dementia with Lewy bodies. Alzheimers Dement. 14, 330–339 (2018).
pubmed: 29100980
Thomas, A. J. et al. Improving the identification of dementia with Lewy bodies in the context of an Alzheimer’s-type dementia. Alzheimers Res Ther. 10, 27 (2018).
pubmed: 29490691 pmcid: 5831205
Coughlin, D. et al. Cognitive and pathological influences of tau pathology in Lewy body disorders. Ann. Neurol. 85, 259–271 (2019).
pubmed: 30549331 pmcid: 6375484
Ryman, S. G. et al. Cognition at each stage of Lewy body disease with co-occurring Alzheimer’s disease pathology. J. Alzheimers Dis. 80, 1243–1256 (2021).
pubmed: 33646154 pmcid: 8150665
Brenowitz, W. D. et al. Mixed neuropathologies and associations with domain-specific cognitive decline. Neurology 89, 1773–1781 (2017).
pubmed: 28939667 pmcid: 5664309
Malek-Ahmadi, M. et al. Faster cognitive decline in dementia due to Alzheimer disease with clinically undiagnosed Lewy body disease. PLoS ONE 14, e0217566 (2019).
pubmed: 31237877 pmcid: 6592515
Gu, Y. et al. Clinical trajectories at the end of life in autopsy-confirmed dementia patients with Alzheimer disease and Lewy bodies pathologies. Neurology 98, e2140–e2149 (2022).
pubmed: 35379761 pmcid: 9169937
Mammana, A. et al. RT-QuIC detection of pathological α-synuclein in skin punches of patients with Lewy body disease. Mov. Disord. 36, 2173–2177 (2021).
pubmed: 34002890 pmcid: 8518528
Wang, Z. et al. Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 78, 1–11 (2020).
pubmed: 33159526 pmcid: 7648910
Iranzo, A. et al. Misfolded α-synuclein assessment in skin and CSF by RT-QuIC in isolated REM sleep behavior disorder. Neurology https://doi.org/10.1212/WNL.0000000000207147 (2023).
Kluge, A. et al. Detection of neuron-derived pathological α-synuclein in blood. Brain 145, 3058–3071 (2022).
pubmed: 35722765
Spina, S. et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 144, 2186–2198 (2021).
pubmed: 33693619 pmcid: 8502474
Twohig, D. & Nielsen, H. M. α-Synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 14, 23 (2019).
pubmed: 31186026 pmcid: 6558879
Toledo, J. B. et al. Dementia with Lewy bodies: impact of co-pathologies and implications for clinical trial design. Alzheimers Dement. 19, 318–332 (2023).
pubmed: 36239924
Parkkinen, L., Soininen, H., Laakso, M. & Alafuzoff, I. α-Synuclein pathology is highly dependent on the case selection. Neuropathol. Appl. Neurobiol. 27, 314–325 (2001).
pubmed: 11532162
Jellinger, K. A. & Attems, J. Prevalence and pathology of dementia with Lewy bodies in the oldest old: a comparison with other dementing disorders. Dement Geriatr. Cogn. Disord. 31, 309–316 (2011).
pubmed: 21502762
Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).
pubmed: 32722745
Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).
pubmed: 31039256 pmcid: 6536849
Rosler, T. W. et al. Four-repeat tauopathies. Prog. Neurobiol. 180, 101644 (2019).
pubmed: 31238088
Kapasi, A. et al. Limbic-predominant age-related TDP-43 encephalopathy, ADNC pathology, and cognitive decline in aging. Neurology 95, e1951–e1962 (2020).
pubmed: 32753441 pmcid: 7682843
Walker, J. M. et al. Cognitive and neuropsychological profiles in Alzheimer’s disease and primary age-related tauopathy and the influence of comorbid neuropathologies. J. Alzheimers Dis. https://doi.org/10.3233/JAD-230022 (2023).
Postuma, R. B. et al. A single-question screen for rapid eye movement sleep behavior disorder: a multicenter validation study. Mov. Disord. 27, 913–916 (2012).
pubmed: 22729987 pmcid: 4043389
Palmqvist, S. et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 76, 1060–1069 (2019).
pubmed: 31233127 pmcid: 6593637
Palmqvist, S. et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat. Med. 27, 1034–1042 (2021).
pubmed: 34031605
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) 607–608 (American Psychiatric Publishing, 2013).
Petrazzuoli, F. et al. Brief cognitive tests used in primary care cannot accurately differentiate mild cognitive impairment from subjective cognitive decline. J. Alzheimers Dis. 75, 1191–1201 (2020).
pubmed: 32417771 pmcid: 7369041
Borland, E., Stomrud, E., van Westen, D., Hansson, O. & Palmqvist, S. The age-related effect on cognitive performance in cognitively healthy elderly is mainly caused by underlying AD pathology or cerebrovascular lesions: implications for cutoffs regarding cognitive impairment. Alzheimers Res. Ther. 12, 30 (2020).
pubmed: 32209137 pmcid: 7093968
Borland, E. et al. The Montreal cognitive assessment: normative data from a large Swedish population-based cohort. J. Alzheimers Dis. 59, 893–901 (2017).
pubmed: 28697562 pmcid: 5545909
Shirk, S. D. et al. A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimers Res. Ther. 3, 32 (2011).
pubmed: 22078663 pmcid: 3308021
Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56, 33–39 (1999).
pubmed: 9923759
Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: The Movement Disorder Society criteria. Mov. Disord. 32, 853–864 (2017).
pubmed: 28467028 pmcid: 5516529
Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).
pubmed: 18725592 pmcid: 2676993
Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).
pubmed: 23359374 pmcid: 3590050
Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).
pubmed: 21325651 pmcid: 3059138
Papp, K. V., Rentz, D. M., Orlovsky, I., Sperling, R. A. & Mormino, E. C. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimers Dement. 3, 668–677 (2017).
Rosen, W. G., Mohs, R. C. & Davis, K. L. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 141, 1356–1364 (1984).
pubmed: 6496779
Insel, P. S. et al. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology 93, e322–e333 (2019).
pubmed: 31289148 pmcid: 6669933
Pichet Binette, A. et al. Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer’s dementia in mild cognitive impairment patients. Alzheimers Res. Ther. 14, 46 (2022).
pubmed: 35351181 pmcid: 8966264
Smith, A. Symbol Digit Modalities Test (Western Psychological Services, 1991).
Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).
pubmed: 1202204
Astrand, R., Rolstad, S. & Wallin, A. Cognitive Impairment Questionnaire (CIMP-QUEST): reported topographic symptoms in MCI and dementia. Acta Neurol. Scand. 121, 384–391 (2010).
pubmed: 20055769
Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).
Palmqvist, S. et al. An accurate fully automated panel of plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12751 (2022).
Blennow, K. et al. Second-generation Elecsys cerebrospinal fluid immunoassays aid diagnosis of early Alzheimer’s disease. Clin. Chem. Lab. Med. 61, 234–244 (2023).
pubmed: 36282960
Palmqvist, S. et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 71, 1282–1289 (2014).
pubmed: 25155658
Groveman, B. R. et al. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol. Commun. 6, 7 (2018).
pubmed: 29422107 pmcid: 5806364
Rossi, M. et al. Diagnostic value of the CSF α-synuclein real-time quaking-induced conversion assay at the prodromal MCI stage of dementia with Lewy bodies. Neurology 97, e930–e940 (2021).
pubmed: 34210822 pmcid: 8408510

Auteurs

Corinne Quadalti (C)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.

Sebastian Palmqvist (S)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
Memory Clinic, Skåne University Hospital, Malmö, Sweden.

Sara Hall (S)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
Memory Clinic, Skåne University Hospital, Malmö, Sweden.

Marcello Rossi (M)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.

Angela Mammana (A)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.

Shorena Janelidze (S)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.

Sofia Dellavalle (S)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.

Niklas Mattsson-Carlgren (N)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
Neurology Clinic, Skåne University Hospital, Lund, Sweden.
Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.

Simone Baiardi (S)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

Erik Stomrud (E)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
Memory Clinic, Skåne University Hospital, Malmö, Sweden.

Oskar Hansson (O)

Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden. oskar.hansson@med.lu.se.
Memory Clinic, Skåne University Hospital, Malmö, Sweden. oskar.hansson@med.lu.se.

Piero Parchi (P)

IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy. piero.parchi@unibo.it.
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. piero.parchi@unibo.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH