Neuromuscular junction denervation and terminal Schwann cell loss in the hTDP-43 overexpression mouse model of amyotrophic lateral sclerosis.


Journal

Neuropathology and applied neurobiology
ISSN: 1365-2990
Titre abrégé: Neuropathol Appl Neurobiol
Pays: England
ID NLM: 7609829

Informations de publication

Date de publication:
08 2023
Historique:
revised: 30 06 2023
received: 01 03 2023
accepted: 11 07 2023
medline: 31 8 2023
pubmed: 19 7 2023
entrez: 19 7 2023
Statut: ppublish

Résumé

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43 Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology. We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43 Thy1-hTDP-43

Identifiants

pubmed: 37465879
doi: 10.1111/nan.12925
doi:

Substances chimiques

aspartyl-arginyl-valyl-tyrosyl-isoleucyl-histidyl-prolyl-phenylalanyl-histidyl-leucyl-valyl-isoleucyl-histidine 0
DNA-Binding Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12925

Informations de copyright

© 2023 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

Références

van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084-2098. doi:10.1016/S0140-6736(17)31287-4
Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(7):540-549. doi:10.1136/jnnp-2016-315018
Sleigh JN, Tosolini AP, Gordon D, et al. Mice carrying ALS mutant TDP-43, but not mutant FUS, display in vivo defects in axonal transport of signaling endosomes. Cell Rep. 2020;30(11):3655-3662.e2. doi:10.1016/j.celrep.2020.02.078
Arnold ES, Ling SC, Huelga SC, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S a. 2013;110(8):E736-E745. doi:10.1073/pnas.1222809110
Neumann M, Sampathu DM, Kwong L, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (80-). 2006;314(5796):130-133. doi:10.1126/science.1134108
Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011;43(3):470-477. doi:10.1007/s12031-010-9467-1
Santosa KB, Keane AM, Jablonka-Shariff A, Vannucci B, Snyder-Warwick AK. Clinical relevance of terminal Schwann cells: an overlooked component of the neuromuscular junction. J Neurosci Res. 2018;96(7):1125-1135. doi:10.1002/jnr.24231
Bjornskov EK, Norris FH, Mower-Kuby J. Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis. Arch Neurol. 1984;41(5):527-530. doi:10.1001/archneur.1984.04050170073021
Tsujihata M, Hazama R, Yoshimura T, Satoh A, Mori M, Nagataki S. The motor end-plate fine structure and ultrastructural localization of acetylcholine receptors in amyotrophic lateral sclerosis. Muscle Nerve. 1984;7(3):243-249. doi:10.1002/mus.880070310
Yu H, Chen L, Zhang S, He J, Fan D. Early axonal dysfunction of the peripheral nervous system influences disease progression of ALS: evidence from clinical neuroelectrophysiology. Front Neurol. 2021;12(February):1, 574919-8. doi:10.3389/fneur.2021.574919
Jenkins TM, Alix JJP, Fingret J, et al. Longitudinal multi-modal muscle-based biomarker assessment in motor neuron disease. J Neurol. 2019;267(1):0123456789. doi:10.1007/s00415-019-09580-x
Philips T, Rothstein JD. Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol. 2016;69. doi:10.1002/0471141755.ph0567s69.Rodent
Vinsant S, Mansfield C, Jimenez-Moreno R, et al. Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part II, results and discussion. Brain Behav. 2013;3(4):431-457. doi:10.1002/brb3.142
Narai H, Manabe Y, Nagai M, et al. Early detachment of neuromuscular junction proteins in ALS mice with SODG93A mutation. Neurol Int. 2009;1(1):16, e16. doi:10.4081/ni.2009.e16
Kanning KC, Kaplan A, Henderson CE. Motor neuron diversity in development and disease. Annu Rev Neurosci. 2010;33(1):409-440. doi:10.1146/annurev.neuro.051508.135722
Tosolini AP, Sleigh JN, Surana S, Rhymes ER, Cahalan SD, Schiavo G. BDNF-dependent modulation of axonal transport is selectively impaired in ALS. Acta Neuropathol Commun. 2022;10(1):121. doi:10.1186/s40478-022-01418-4
Alhindi A, Boehm I, Chaytow H. Small junction, big problems: neuromuscular junction pathology in mouse models of amyotrophic lateral sclerosis (ALS). J Anat. 2022;241(5):1089-1107. doi:10.1111/joa.13463
Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602-611. doi:10.1016/j.bbrc.2006.10.093
Pamphlett R, Luquin N, McLean C, Jew SK, Adams L. TDP-43 neuropathology is similar in sporadic amyotrophic lateral sclerosis with or without TDP-43 mutations. Neuropathol Appl Neurobiol. 2009;35(2):222-225. doi:10.1111/j.1365-2990.2008.00982.x
Gordon D, Dafinca R, Scaber J, et al. Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol Dis. 2019;121(September 2018):148-162. doi:10.1016/j.nbd.2018.09.024
Ebstein SY, Yagudayeva I, Shneider NA. Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS. Cell Rep. 2019;26(2):364-373.e4. doi:10.1016/j.celrep.2018.12.045
Altman T, Ionescu A, Ibraheem A, et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun. 2021;12(1):6914. doi:10.1038/s41467-021-27221-8
Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci. 2010;107(8):3858-3863. doi:10.1073/pnas.0912417107
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133(6):863-885. doi:10.1007/s00401-017-1708-8
Chaytow H, Carroll E, Gordon D, et al. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. EBioMedicine. 2022;83:104202. doi:10.1016/j.ebiom.2022.104202
Alhindi A, Boehm I, Forsythe RO, et al. Terminal Schwann cells at the human neuromuscular junction. Brain Commun. 2021;44(2):fcab081. doi:10.1093/braincomms/fcab081
Minty G, Hoppen A, Boehm I, et al. ANMJ-morph: a simple macro for rapid analysis of neuromuscular junction morphology. R Soc Open Sci. 2020;7(4):200128. doi:10.1098/rsos.200128
Jones RA, Reich CD, Dissanayake KN, et al. NMJ-morph reveals principal components of synaptic morphology influencing structure-function relationships at the neuromuscular junction. Open Biol. 2016;6(12):160240. doi:10.1098/rsob.160240
Feng G, Mellor RH, Bernstein M, et al. Neurotechnique imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP variants with altered spectral properties and improved translational efficiency, thermostability, and quantum yield. As a result of these favorable pro. Neuron. 2000;28(1):41-51. doi:10.1016/S0896-6273(00)00084-2
Riessland M, Ackermann B, Förster AF, et al. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet. 2010;19(8):1492-1506. doi:10.1093/hmg/ddq023
Spiller KJ, Cheung CJ, Restrepo CR, et al. Selective motor neuron resistance and recovery in a new inducible mouse model of TDP-43 proteinopathy. J Neurosci. 2016;36(29):7707-7717. doi:10.1523/JNEUROSCI.1457-16.2016
Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors. PLoS ONE. 2013;8(2):e57473. doi:10.1371/journal.pone.0057473
Bruneteau G, Bauché S, Gonzalez de Aguilar JL, et al. Endplate denervation correlates with Nogo-A muscle expression in amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol. 2015;2(4):362-372. doi:10.1002/acn3.179
Gould TW, Buss RR, Vinsant S, et al. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci. 2006;26(34):8774-8786. doi:10.1523/JNEUROSCI.2315-06.2006
Jones RA, Harrison C, Eaton SL, et al. Cellular and molecular anatomy of the human neuromuscular junction. Cell Rep. 2017;21(9):2348-2356. doi:10.1016/j.celrep.2017.11.008
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12(February):1-36. doi:10.3389/fnmol.2019.00025
Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812-826. doi:10.1002/humu.22319
Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (80-). 2008;319(5870):1668-1672. doi:10.1126/science.1154584
Van Deerlin VM, Leverenz JB, Bekris LM, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 2008;7(5):409-416. doi:10.1016/S1474-4422(08)70071-1
Huang C, Xia PY, Zhou H. Sustained expression of TDP-43 and FUS in motor neurons in rodent's lifetime. Int J Biol Sci. 2010;6(4):396-406. doi:10.7150/ijbs.6.396
Sephton CF, Good SK, Atkin S, et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem. 2010;285(9):6826-6834. doi:10.1074/jbc.M109.061846
Eréndira Avendaño-Vázquez S, Dhir A, Bembich S, Buratti E, Proudfoot N, Baralle FE. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 2012;26(15):1679-1684. doi:10.1101/gad.194829.112
Young AL, Vogel JW, Robinson JL, et al. Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies. Brain Published online May 8. 2023;146(7):2975-2988. doi:10.1093/brain/awad145
Mackenzie IRA, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138:54-70. doi:10.1111/jnc.13588
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79(3):416-438. doi:10.1016/j.neuron.2013.07.033
Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232-240. doi:10.1016/j.expneurol.2003.10.004
Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918-1929. doi:10.1111/ene.14393
Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci. 2006;9(3):408-419. doi:10.1038/nn1653
Bolliger MF, Zurlinden A, Lüscher D, et al. Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. J Cell Sci. 2010;123(22):3944-3955. doi:10.1242/jcs.072090
Mech AM, Brown AL, Schiavo G, Sleigh JN. Morphological variability is greater at developing than mature mouse neuromuscular junctions. J Anat. 2020;237(4):603-617. doi:10.1111/joa.13228
Boehm I, Miller J, Wishart TM, et al. Neuromuscular junctions are stable in patients with cancer cachexia. J Clin Invest. 2020;130(3):1461-1465. doi:10.1172/JCI128411
Martin LJ, Wong M. Skeletal muscle-restricted expression of human SOD1 in transgenic mice causes a fatal ALS-like syndrome. Front Neurol. 2020;11(December):1, 592851-26. doi:10.3389/fneur.2020.592851
Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci. 2014;34(18):6323-6333. doi:10.1523/JNEUROSCI.4673-13.2014

Auteurs

Abrar Alhindi (A)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.
Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia.

Megan Shand (M)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Hannah L Smith (HL)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Ana S Leite (AS)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.
School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil.

Yu-Ting Huang (YT)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Dinja van der Hoorn (D)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Zara Ridgway (Z)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Kiterie M E Faller (KME)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.
Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.

Ross A Jones (RA)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Thomas H Gillingwater (TH)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Helena Chaytow (H)

Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH