Adding nanoparticles to improve emulsion efficiency and enhance microbial degradation in Pickering emulsions.

Fumed SiO2 particles Interfacial microbial degradation Pickering emulsions Synergistic effect Tetradecane degradation

Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 30 05 2023
accepted: 09 07 2023
revised: 02 07 2023
medline: 21 8 2023
pubmed: 19 7 2023
entrez: 19 7 2023
Statut: ppublish

Résumé

Interfacial microbial degradation of alkane in Pickering emulsions stabilized by hydrophobic bacterial cells is a new mechanism for microbial degradation of water-insoluble chemicals, where both water-insoluble chemicals in the oil phase and water-soluble nutrients (such as nitrogen and phosphorus) in the water phase are bio-accessible to living microorganisms anchoring onto the oil-water interfaces. In the present work, super-hydrophobic Mycobacterium sp. (contact angle 168.6°) degradation of tetradecane was set up as a model. Addition of fumed SiO

Identifiants

pubmed: 37466667
doi: 10.1007/s00253-023-12688-w
pii: 10.1007/s00253-023-12688-w
doi:

Substances chimiques

n-tetradecane 03LY784Y58
Emulsions 0
Silicon Dioxide 7631-86-9
Water 059QF0KO0R
Gases 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5843-5854

Subventions

Organisme : National Natural Science Foundation of China
ID : 22178218

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abbasi A, Bothun GD, Bose A (2018) Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 34:5352–5357
pubmed: 29656641 doi: 10.1021/acs.langmuir.8b00082
Abbasnezhad H, Foght JM, Gray MR (2011) Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation 22:485–496
pubmed: 20886260 doi: 10.1007/s10532-010-9421-5
Aono R, Bobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63(9):3637–3642
pubmed: 9293016 pmcid: 168671 doi: 10.1128/aem.63.9.3637-3642.1997
Binks BP, Lumsdon SO (2000) Transitional phase inversion of solid-stabilized emulsions using particle mixtures. Langmuir 16:3748–3756
doi: 10.1021/la991427q
Cai C, Sang N, Teng S, Shen Z, Guo J, Zhao X, Guo Z (2016) Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water. Surf Coat Technol 307:366–373
doi: 10.1016/j.surfcoat.2016.09.009
Chen Z, Ji H, Zhao C, Ju E, Ren J, Qu X (2015) Individual surface-engineered microorganisms as robust Pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. Angew Chem Int Ed 54:4904–4908
doi: 10.1002/anie.201412049
Chen D-Z, Jiang N-X, Ye J-X, Cheng Z-W, Zhang S-H, Chen J-M (2017) Comparative investigation on a hexane-degrading strain with different cell surface hydrophobicities mediated by starch and chitosan. Appl Microbiol Biotechnol 101:3829–3837
pubmed: 28091789 doi: 10.1007/s00253-017-8100-4
Chen D-Z, Liu H-Y, Yu Y, Yu N-N, Ye J-X, Cheng Z-W, Zhang S-H, Chen J-M (2021) Enhanced biodegradation of n-hexane in a two-phase partitioning bioreactor inoculated with Pseudomonas mendocina NX-1 under chitosan stimulation. J Hazard Mater 419:12633
doi: 10.1016/j.jhazmat.2021.126330
Chen S, Du Y, Zhang H, Wang Q, Gong Y, Chang R, Zhang J, Zhang J, Yuan Y, Liu B, Yan H, Li Y (2022) The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocolloids 130:107735
doi: 10.1016/j.foodhyd.2022.107735
Chevalier Y, Bolzinger M-A (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A 439:23–34
doi: 10.1016/j.colsurfa.2013.02.054
Darracq G, Couvert A, Couriol C, Thomas D, Amrane A, Dumont E, Andres Y, Cloirec PL (2012) Optimization of the volume fraction of the NAPL, silicone oil, and biodegradation kinetics of toluene and DMDS in a TPPB. Intern Biodeter Biodegrad 71:9–14
doi: 10.1016/j.ibiod.2012.03.004
Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19(11):457–462
pubmed: 11602310 doi: 10.1016/S0167-7799(01)01789-9
Dekker RI, Velandia SF, Kibbelaar HVM, Morcy A, Sadtler V, Roques-Carmes T, Groenewold J, Kegel WK, Velikov KP, Bonn D (2023) Is there a difference between surfactant-stabilised and Pickering emulsions? Soft Matter 19:1941–1951
pubmed: 36808176 doi: 10.1039/D2SM01375D
Destribats M, Stephane G, Laurichesse E, Tanner H, Leal-Calderon F, Heroguez V, Schmitt V (2014) Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties? Langmuir 30:9313–9326
pubmed: 25055160 doi: 10.1021/la501299u
Finkle P, Draper HD, Hildebrand JH (1923) The theory of emulsification. J Am Chem Soc 45:2780–2788
doi: 10.1021/ja01665a002
Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973
pubmed: 17262209 doi: 10.1007/s00253-006-0833-4
Honda K, Yamashita S, Nakagawa H, Sameshima Y, Omasa T, Kato J, Ohtake H (2008) Stabilization of water-in-oil emulsion by Rhodococcus opacus B-4 and its application to biotransformation. Appl Microbiol Biotechnol 78:767–773
pubmed: 18270698 doi: 10.1007/s00253-008-1378-5
Jia X, Zhang S, Li J, Xia J, Yao R, Zhao X, Wu B, Bai F, Xiao Y (2020) Engineered bacterial biofloc formation enhancing phenol removal and cell tolerance. Appl Microbiol Biotechnol 104:1187–1199
pubmed: 31834438 doi: 10.1007/s00253-019-10289-0
Jiang H, Zhang S, Sun G, Li Y, Guan X, Yang C, Ngai T (2022) Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chem Sci 13:39–43
doi: 10.1039/D1SC05398A
Juárez JA, Whitby CP (2012) Oil-in-water Pickering emulsion destabilisation at low particle concentrations. J Colloid Interf Sci 368:319–325
doi: 10.1016/j.jcis.2011.11.029
Kaptay G (2006) On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surf A 282:387–401
doi: 10.1016/j.colsurfa.2005.12.021
Kawaguchi H, Kobayashi H, Sato K (2012) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 113(3):360–366
pubmed: 22099375 doi: 10.1016/j.jbiosc.2011.10.017
Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons-basic principles for bioremediation: a review. Molecules 25:856
pubmed: 32075198 pmcid: 7070569 doi: 10.3390/molecules25040856
Li Y, Gong H, Cheng H, Wang L, Bao M (2017) Individually immobilized and surface-modified hydrocarbon-degrading bacteria for oil emulsification and biodegradation. Marine Pollution Bullet 125:433–439
doi: 10.1016/j.marpolbul.2017.09.013
Macleod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactors: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805
doi: 10.1016/j.procbio.2004.06.042
Masalova I, Tshilumbu NN, Fester V, Kharatyan E (2020) Is the combination of two particles with different degrees of hydrophobicity an alternative method for tuning the average particle hydrophobicity? J Mol Liquids 313:113444
doi: 10.1016/j.molliq.2020.113444
Meckenstock RU, von Netzer F, Stumpp C, Lueders T, Himmelberg AM, Herthorn N, Schmitt-Kopplin P, Harir M, Hosein R, Haque S, Schulze-Makuch D (2014) Water droplets in oil are microhabitats for microbial life. Science 345(6197):673–676
pubmed: 25104386 doi: 10.1126/science.1252215
Nallamilli T, Binks BP, Mani E, Basavaraj MG (2015) Stabilization of Pickering emulsions with oppositely changed laxtex particles: influence of various parameters and particle arrangement around droplets. Langmuir 31:11200–11208
pubmed: 26411316 doi: 10.1021/acs.langmuir.5b02443
Ni L, Yu C, Wei Q, Liu D, Qi J (2022) Pickering emulsion catalysis: interfacial chemistry, catalyst design, challenges, and perspectives. Angew Chem Int Ed 61:e202115885
doi: 10.1002/anie.202115885
Pan T, Liu C, Wang M, Zhang J (2022) Interfacial biodegradation of phenanthrene in bacteria-carboxymethylcellulose stabilized Pickering emulsions. Appl Microbiol Biotechnol 106:3829–3836
pubmed: 35536403 doi: 10.1007/s00253-022-11952-9
Pickering SU (1907) CXCVI-emulsions. J Chem Soc 91:2001–2021
doi: 10.1039/CT9079102001
Qi L, Zhou Y, Luo Z, Gao Q, Shi Y-C (2023) Facile synthesis of lipase-loaded starch nanoparticles as recyclable biocatalyst in Pickering interfacial systems. Carbohyd Polym 299:120203
doi: 10.1016/j.carbpol.2022.120203
Rodriguez AMB, Binks BP (2020) Catalysis in Pickering emulsions. Soft Matter 16:10221–10243
pubmed: 33185218 doi: 10.1039/D0SM01636E
Rodriguez AMB, Schober L, Hinzmann A, Groger H, Binks BP (2021) Effect of particle wettability and particle concentration on the enzymatic dehydration of n-octanaloxime in Pickering emulsions. Angew Chen Int Ed 60:1450–1457
doi: 10.1002/anie.202013171
Saha A, John VT, Bose A (2015) In situ assembly of hydrophilic and hydrophobic nanoparticles at oil-water interfaces as a versatile strategy to form stable emulsions. ACS Appl Mater Interfaces 7:21010–21014
pubmed: 26372053 doi: 10.1021/acsami.5b06940
Song N, Wang A, Li J, Zhu Z, Shi H, Ma X, Sun D (2018) Study on influencing factors of Pickering emulsions stabilized by hydroxyapatite nanoparticles with nonionic surfactants. Soft Matter 14:3889–3901
pubmed: 29726876 doi: 10.1039/C8SM00241J
Wang Z, van Oers MCM, Rutjes FPJT, Hest JCM (2012) Polyersome colloidsomes for enzyme catalysis in a biphasic system. Angew Chem Int Ed 51:10746–10750
doi: 10.1002/anie.201206555
Whitby CP, Parthipan R (2019) Influence of particle concentration on multiple droplet formation in Pickering emulsions. J Colloid Interf Sci 554:315–323
doi: 10.1016/j.jcis.2019.07.017
Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptions involved in alkane assimilation at a low temperature by Rhodococcus sp strain O15. Appl Environ Microbiol 65(7):2961–2968
pubmed: 10388690 pmcid: 91443 doi: 10.1128/AEM.65.7.2961-2968.1999
Wick LY, Wattiau P, Harms H (2002) Influence of growth substrate on the mycolic acid profiles of mycobacteria. Environ Micorbiol 4(10):612–616
doi: 10.1046/j.1462-2920.2002.00340.x
Wilde PJ, Chu BS (2011) Interfacial & colloidal aspects of lipid digestion. Adv Colloid Interf Sci 165:14–22
doi: 10.1016/j.cis.2011.02.004
Xie H, Zhao W, Ali DC, Zhang X, Wang Z (2021) Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catal Sci Technol 11:2816–2826
doi: 10.1039/D0CY02243H
Xie H, Zhao W, Zhang X, Wang Z (2022) Demulsification of bacteria-stabilized Pickering emulsions using modified silica nanoparticles. ACS Appl Mater Interfaces 14:24102–24112
pubmed: 35603430 doi: 10.1021/acsami.2c02526
Zeng Q, Sun M, Xie X, Zhang Y, Hou H, Fang X, Guo T, Yuan H, Meng T (2023) Lipase-entrapped colloidosomes with tunable positioning at the oil-water interface for Pickering emulsion-enhanced biocatalysis. ACS Appl Mater Interfaces 14:54781–54789
doi: 10.1021/acsami.2c17451
Zhao W, Xie H, Zhang X, Wang Z (2022) Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions. Appl Microbiol Biotechnol 106:2403–2414
pubmed: 35352152 doi: 10.1007/s00253-022-11889-z
Zou H, Shi H, Hao S, Hao Y, Yang J, Tian X, Yang H (2023) Boosting catalytic selectivity through a precise spatial control of catalysts at Pickering droplet interfaces. J Am Chem Soc 145:2511–2522
pubmed: 36652392 doi: 10.1021/jacs.2c12120

Auteurs

Daniel Chikere Ali (DC)

State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China.

Xuehong Zhang (X)

State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China.

Zhilong Wang (Z)

State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China. zlwang@sjtu.edu.cn.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals

Classifications MeSH