An unconventional proanthocyanidin pathway in maize.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 07 2023
19 07 2023
Historique:
received:
26
02
2023
accepted:
09
07
2023
medline:
21
7
2023
pubmed:
20
7
2023
entrez:
19
7
2023
Statut:
epublish
Résumé
Proanthocyanidins (PAs), flavonoid polymers involved in plant defense, are also beneficial to human health and ruminant nutrition. To date, there is little evidence for accumulation of PAs in maize (Zea mays), although maize makes anthocyanins and possesses the key enzyme of the PA pathway, anthocyanidin reductase (ANR). Here, we explore whether there is a functional PA biosynthesis pathway in maize using a combination of analytical chemistry and genetic approaches. The endogenous PA biosynthetic machinery in maize preferentially produces the unusual PA precursor (+)-epicatechin, as well as 4β-(S-cysteinyl)-catechin, as potential PA starter and extension units. Uncommon procyanidin dimers with (+)-epicatechin as starter unit are also found. Expression of soybean (Glycine max) anthocyanidin reductase 1 (ANR1) in maize seeds increases the levels of 4β-(S-cysteinyl)-epicatechin and procyanidin dimers mainly using (-)-epicatechin as starter units. Introducing a Sorghum bicolor transcription factor (SbTT2) specifically regulating PA biosynthesis into a maize inbred deficient in anthocyanin biosynthesis activates both anthocyanin and PA biosynthesis pathways, suggesting conservation of the PA regulatory machinery across species. Our data support the divergence of PA biosynthesis across plant species and offer perspectives for future agricultrural applications in maize.
Identifiants
pubmed: 37468488
doi: 10.1038/s41467-023-40014-5
pii: 10.1038/s41467-023-40014-5
pmc: PMC10356931
doi:
Substances chimiques
Proanthocyanidins
0
Anthocyanins
0
Catechin
8R1V1STN48
Plant Proteins
0
Oxidoreductases
EC 1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4349Informations de copyright
© 2023. The Author(s).
Références
Plant Physiol. 2009 Nov;151(3):1114-29
pubmed: 19710231
Annu Rev Genet. 1991;25:173-99
pubmed: 1839877
Planta. 2014 Nov;240(5):901-11
pubmed: 25106530
J Agric Food Chem. 2005 Oct 5;53(20):7878-85
pubmed: 16190645
Plant Cell. 2004 Feb;16(2):450-64
pubmed: 14742877
Phytochemistry. 2004 May;65(10):1421-8
pubmed: 15231416
Plant Direct. 2022 Oct 12;6(10):e453
pubmed: 36254336
New Phytol. 2016 May;210(3):905-21
pubmed: 26725247
J Agric Food Chem. 2012 Jan 18;60(2):574-84
pubmed: 22107112
Plant Cell. 2001 Sep;13(9):2099-114
pubmed: 11549766
Methods Mol Biol. 2011;710:327-41
pubmed: 21207278
Biochem Genet. 1977 Jun;15(5-6):509-19
pubmed: 880210
Plant Commun. 2019 Nov 27;1(1):100010
pubmed: 33404535
J Plant Res. 2007 May;120(3):445-9
pubmed: 17277900
Curr Opin Biotechnol. 2013 Apr;24(2):329-35
pubmed: 22901316
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9631-5
pubmed: 3025847
Front Plant Sci. 2022 Jan 06;12:777354
pubmed: 35069633
Plant Biotechnol J. 2021 Jul;19(7):1429-1442
pubmed: 33539645
Nutrients. 2021 Jan 07;13(1):
pubmed: 33430257
G3 (Bethesda). 2021 Feb 9;11(2):
pubmed: 33585872
Plant Cell. 1993 Dec;5(12):1795-805
pubmed: 8305872
Curr Opin Biotechnol. 2007 Jun;18(3):193-9
pubmed: 17399975
Sci Adv. 2021 May 14;7(20):
pubmed: 33990337
Plant Physiol. 2017 May;174(1):154-171
pubmed: 28348066
J Exp Bot. 2003 Jan;54(381):239-48
pubmed: 12493851
Planta. 2017 Aug;246(2):323-335
pubmed: 28421329
J Agric Food Chem. 2006 Jan 25;54(2):536-42
pubmed: 16417317
Talanta. 2014 Apr;121:81-8
pubmed: 24607113
EMBO J. 1986 May;5(5):829-33
pubmed: 15957214
Nat Protoc. 2007;2(7):1565-72
pubmed: 17585298
Plant Cell. 1989 Dec;1(12):1175-83
pubmed: 2535537
Vascul Pharmacol. 2015 Aug;71:11-5
pubmed: 26026398
PLoS One. 2013 May 31;8(5):e64664
pubmed: 23741362
J Agric Food Chem. 2012 Oct 24;60(42):10461-71
pubmed: 23033811
Plant Cell. 2000 Dec;12(12):2383-2394
pubmed: 11148285
Food Chem. 2014 Sep 1;158:449-58
pubmed: 24731369
Plant Physiol. 2022 Aug 29;190(1):202-205
pubmed: 35695780
Plant Physiol. 2014 Jun 19;165(4):1424-1439
pubmed: 24948832
Nat Plants. 2016 Nov 21;2:16182
pubmed: 27869786
Plant Sci. 2020 Feb;291:110364
pubmed: 31928683
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
J Agric Food Chem. 2017 May 31;65(21):4341-4350
pubmed: 28446022
Plant Physiol. 2003 Jul;132(3):1448-63
pubmed: 12857826
Planta. 2000 Jan;210(2):195-204
pubmed: 10664125
Science. 2003 Jan 17;299(5605):396-9
pubmed: 12532018
Plant Mol Biol. 2006 Jan;60(2):185-99
pubmed: 16429259
Plant J. 2006 Mar;45(6):895-907
pubmed: 16507081
Plant Physiol. 2020 Oct;184(2):579-591
pubmed: 32817234
Biotechnol Adv. 2018 May - Jun;36(3):666-681
pubmed: 29355598
Plant Cell. 2012 Jul;24(7):2745-64
pubmed: 22822204
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10281-6
pubmed: 22699509
J Agric Food Chem. 2011 Jul 13;59(13):7068-74
pubmed: 21639140
PLoS One. 2012;7(6):e37463
pubmed: 22719841
Plant Direct. 2019 Feb 21;3(2):e00118
pubmed: 31245761
EMBO J. 1987 Dec 1;6(12):3553-8
pubmed: 3428265
Nucleic Acids Res. 2020 Jan 8;48(D1):D440-D444
pubmed: 31691833