Establishing haptic texture attribute space and predicting haptic attributes from image features using 1D-CNN.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Jul 2023
Historique:
received: 19 02 2023
accepted: 17 07 2023
medline: 20 7 2023
pubmed: 20 7 2023
entrez: 19 7 2023
Statut: epublish

Résumé

The current study strives to provide a haptic attribute space where texture surfaces are located based on their haptic attributes. The main aim of the haptic attribute space is to come up with a standardized model for representing and identifying haptic textures analogous to the RGB model for colors. To this end, a four dimensional haptic attribute space is established by conducting a psychophysical experiment where human participants rate 100 real-life texture surfaces according to their haptic attributes. The four dimensions of the haptic attribute space are rough-smooth, flat-bumpy, sticky-slippery, and hard-soft. The generalization and scalability of the haptic attribute space is achieved by training a 1D-CNN model for predicting attributes of haptic textures. The 1D-CNN is trained using the attribute data from psychophysical experiments and image features collected from the images of real textures. The prediction power granted by the 1D-CNN renders scalability to the haptic attribute space. The prediction accuracy of the proposed 1D-CNN model is compared against other machine learning and deep learning algorithms. The results show that the proposed method outperforms the other models on MAE and RMSE metrics.

Identifiants

pubmed: 37468571
doi: 10.1038/s41598-023-38929-6
pii: 10.1038/s41598-023-38929-6
pmc: PMC10356925
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11684

Informations de copyright

© 2023. The Author(s).

Références

J Acoust Soc Am. 2012 May;131(5):4002-12
pubmed: 22559373
IEEE Trans Haptics. 2015 Oct-Dec;8(4):410-20
pubmed: 26054074
Somatosens Mot Res. 2005 Sep;22(3):193-206
pubmed: 16338827
J Exp Psychol Hum Percept Perform. 1981 Aug;7(4):902-15
pubmed: 6457101
Acta Psychol (Amst). 2003 Oct;114(2):165-84
pubmed: 14529823
Proc Inst Mech Eng H. 2010;224(1):97-105
pubmed: 20225461
Neuroimage. 2014 Jul 1;94:129-137
pubmed: 24650604
Sci Rep. 2020 Apr 21;10(1):6769
pubmed: 32317680
IEEE Trans Haptics. 2018 Apr-Jun;11(2):291-303
pubmed: 29911984
Neuroimage. 2013 Jul 15;75:123-135
pubmed: 23507388
Percept Psychophys. 2000 Nov;62(8):1534-44
pubmed: 11140177
Multisens Res. 2013;26(5):429-55
pubmed: 24649528
Atten Percept Psychophys. 2009 Oct;71(7):1439-59
pubmed: 19801605
IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):574-86
pubmed: 21768653
Percept Psychophys. 1982 Apr;31(4):339-44
pubmed: 7110887
IEEE Trans Haptics. 2020 Apr-Jun;13(2):404-424
pubmed: 31715573
IEEE Trans Haptics. 2020 Jan-Mar;13(1):94-101
pubmed: 31944990
IEEE Trans Haptics. 2013 Jan-Mar;6(1):81-93
pubmed: 24808270
Appl Opt. 2020 Dec 20;59(36):11359-11370
pubmed: 33362061
Front Neurorobot. 2020 Feb 06;13:116
pubmed: 32116631
IEEE Trans Haptics. 2017 Apr-Jun;10(2):226-239
pubmed: 27845677
IEEE Trans Haptics. 2014 Mar;7(1):3-13
pubmed: 24845741
Acta Psychol (Amst). 2006 Jan;121(1):41-64
pubmed: 16098945
Acta Psychol (Amst). 2005 Mar;118(3):293-318
pubmed: 15698826
J Neurophysiol. 2000 Apr;83(4):1777-86
pubmed: 10758090
Exp Brain Res. 2016 Apr;234(4):1145-58
pubmed: 26790425
Nature. 2002 Jan 24;415(6870):429-33
pubmed: 11807554
Percept Psychophys. 1989 Jan;45(1):49-54
pubmed: 2913570

Auteurs

Waseem Hassan (W)

Department of Computer Science and Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.

Joolekha Bibi Joolee (JB)

Department of Computer Science and Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.

Seokhee Jeon (S)

Department of Computer Science and Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea. jeon@khu.ac.kr.

Classifications MeSH