Multiple intratumoral sources of kit ligand promote gastrointestinal stromal tumor.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
08 2023
Historique:
received: 16 01 2023
accepted: 05 07 2023
revised: 22 06 2023
medline: 21 8 2023
pubmed: 20 7 2023
entrez: 19 7 2023
Statut: ppublish

Résumé

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in Kit

Identifiants

pubmed: 37468679
doi: 10.1038/s41388-023-02777-5
pii: 10.1038/s41388-023-02777-5
doi:

Substances chimiques

Imatinib Mesylate 8A1O1M485B
Stem Cell Factor 0
Pyrimidines 0
Piperazines 0
Benzamides 0
Proto-Oncogene Proteins c-kit EC 2.7.10.1
Antineoplastic Agents 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2578-2588

Subventions

Organisme : NCI NIH HHS
ID : R01 CA102613
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA251063
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Joensuu H, DeMatteo RP. The management of gastrointestinal stromal tumors: a model for targeted and multidisciplinary therapy of malignancy. Annu Rev Med. 2012;63:247–58.
pubmed: 22017446 doi: 10.1146/annurev-med-043010-091813
Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11:4182–90.
pubmed: 15930355 doi: 10.1158/1078-0432.CCR-04-2245
Agaram NP, Besmer P, Wong GC, Guo T, Socci ND, Maki RG, et al. Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors. Clin Cancer Res. 2007;13:170–81.
pubmed: 17200352 doi: 10.1158/1078-0432.CCR-06-1508
Lyman SD, Jacobsen SE. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91:1101–34.
pubmed: 9454740 doi: 10.1182/blood.V91.4.1101
Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63:225–33.
pubmed: 1698557 doi: 10.1016/0092-8674(90)90303-V
Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92:1619–49.
pubmed: 23073628 doi: 10.1152/physrev.00046.2011
Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharm. 2006;533:327–40.
doi: 10.1016/j.ejphar.2005.12.067
Huang EJ, Nocka KH, Buck J, Besmer P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell. 1992;3:349–62.
pubmed: 1378327 pmcid: 275535 doi: 10.1091/mbc.3.3.349
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–37.
pubmed: 12062105 pmcid: 2826110 doi: 10.1016/S0092-8674(02)00754-7
Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995;85:641–9.
pubmed: 7530502 doi: 10.1182/blood.V85.3.641.bloodjournal853641
Yasuda A, Sawai H, Takahashi H, Ochi N, Matsuo Y, Funahashi H, et al. Stem cell factor/c-kit receptor signaling enhances the proliferation and invasion of colorectal cancer cells through the PI3K/Akt pathway. Dig Dis Sci. 2007;52:2292–300.
pubmed: 17410437 doi: 10.1007/s10620-007-9759-7
Zhang W, Stoica G, Tasca SI, Kelly KA, Meininger CJ. Modulation of tumor angiogenesis by stem cell factor. Cancer Res. 2000;60:6757–62.
pubmed: 11118063
Hida T, Ueda R, Sekido Y, Hibi K, Matsuda R, Ariyoshi Y, et al. Ectopic expression of c-kit in small-cell lung cancer. Int J Cancer Suppl. 1994;8:108–9.
pubmed: 7515024 doi: 10.1002/ijc.2910570723
Krystal GW, Hines SJ, Organ CP. Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res. 1996;56:370–6.
pubmed: 8542594
Hayashi Y, Asuzu DT, Gibbons SJ, Aarsvold KH, Bardsley MR, Lomberk GA, et al. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways. PLoS One. 2013;8:e76822.
pubmed: 24116170 pmcid: 3792098 doi: 10.1371/journal.pone.0076822
Bono P, Krause A, von Mehren M, Heinrich MC, Blanke CD, Dimitrijevic S, et al. Serum KIT and KIT ligand levels in patients with gastrointestinal stromal tumors treated with imatinib. Blood. 2004;103:2929–35.
pubmed: 15070666 doi: 10.1182/blood-2003-10-3443
Hirano K, Shishido-Hara Y, Kitazawa A, Kojima K, Sumiishi A, Umino M, et al. Expression of stem cell factor (SCF), a KIT ligand, in gastrointestinal stromal tumors (GISTs): a potential marker for tumor proliferation. Pathol Res Pract. 2008;204:799–807.
pubmed: 18602222 doi: 10.1016/j.prp.2008.05.002
Theou-Anton N, Tabone S, Brouty-Boye D, Saffroy R, Ronnstrand L, Lemoine A, et al. Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism. Br J Cancer. 2006;94:1180–5.
pubmed: 16570044 pmcid: 2361250 doi: 10.1038/sj.bjc.6603063
Sommer G, Agosti V, Ehlers I, Rossi F, Corbacioglu S, Farkas J, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA. 2003;100:6706–11.
pubmed: 12754375 pmcid: 164511 doi: 10.1073/pnas.1037763100
Hou XW, Bai CG, Liu XH, Qiu C, Huang L, Xu JJ, et al. Expression of stem cell factor in gastrointestinal stromal tumors: Implications for proliferation and imatinib resistance. Oncol Lett. 2013;5:552–8.
pubmed: 23420128 doi: 10.3892/ol.2012.1019
Kim TS, Cavnar MJ, Cohen NA, Sorenson EC, Greer JB, Seifert AM, et al. Increased KIT inhibition enhances therapeutic efficacy in gastrointestinal stromal tumor. Clin Cancer Res. 2014;20:2350–62.
pubmed: 24583793 pmcid: 4008656 doi: 10.1158/1078-0432.CCR-13-3033
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.
pubmed: 22281595 pmcid: 3270376 doi: 10.1038/nature10783
Da Silva CA, Heilbock C, Kassel O, Frossard N. Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin-1beta through concerted regulation of a GRE-like and an NF-kappaB response element. FASEB J. 2003;17:2334–6.
pubmed: 14563684 doi: 10.1096/fj.03-0136fje
Grimaldi P, Capolunghi F, Geremia R, Rossi P. Cyclic adenosine monophosphate (cAMP) stimulation of the kit ligand promoter in sertoli cells requires an Sp1-binding region, a canonical TATA box, and a cAMP-induced factor binding to an immediately downstream GC-rich element. Biol Reprod. 2003;69:1979–88.
pubmed: 12904318 doi: 10.1095/biolreprod.103.019471
Hue J, Kim A, Song H, Choi I, Park H, Kim T, et al. IL-18 enhances SCF production of melanoma cells by regulating ROI and p38 MAPK activity. Immunol Lett. 2005;96:211–7.
pubmed: 15585325 doi: 10.1016/j.imlet.2004.08.008
Hollenbeck ST, Sakakibara K, Faries PL, Workhu B, Liu B, Kent KC. Stem cell factor and c-kit are expressed by and may affect vascular SMCs through an autocrine pathway. J Surg Res. 2004;120:288–94.
pubmed: 15234225 doi: 10.1016/j.jss.2004.01.005
Tieniber AD, Hanna AN, Do K, Wang L, Rossi F, DeMatteo RP. Molecular and immunologic techniques in a genetically engineered mouse model of gastrointestinal stromal tumor. J Vis Exp. 2022.
Rossi F, Ehlers I, Agosti V, Socci ND, Viale A, Sommer G, et al. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proc Natl Acad Sci USA. 2006;103:12843–8.
pubmed: 16908864 pmcid: 1568935 doi: 10.1073/pnas.0511076103
Vitiello GA, Bowler TG, Liu M, Medina BD, Zhang JQ, Param NJ, et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J Clin Investig. 2019;129:1863–77.
pubmed: 30762585 pmcid: 6486334 doi: 10.1172/JCI124108
Han ZB, Ren H, Zhao H, Chi Y, Chen K, Zhou B, et al. Hypoxia-inducible factor (HIF)-1 alpha directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis. 2008;29:1853–61.
pubmed: 18339685 doi: 10.1093/carcin/bgn066
Cohen NA, Zeng S, Seifert AM, Kim TS, Sorenson EC, Greer JB, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75:2061–70.
pubmed: 25836719 pmcid: 4467991 doi: 10.1158/0008-5472.CAN-14-2564
Treff NR, Dement GA, Adair JE, Britt RL, Nie R, Shima JE, et al. Human KIT ligand promoter is positively regulated by HMGA1 in breast and ovarian cancer cells. Oncogene. 2004;23:8557–62.
pubmed: 15378028 doi: 10.1038/sj.onc.1207926
Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.
pubmed: 21873989 pmcid: 3278279 doi: 10.1038/nm.2438
Asik M, Karakus S, Haznedaroglu IC, Goker H, Ozatli D, Buyukasik Y, et al. Bone marrow and peripheral blood C-kit ligand concentrations in patients with thrombocytosis and thrombocytopenia. Hematology. 2003;8:369–73.
pubmed: 14668031 doi: 10.1080/10245330310001621279
Horvath VJ, Vittal H, Lorincz A, Chen H, Almeida-Porada G, Redelman D, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130:759–70.
pubmed: 16530517 doi: 10.1053/j.gastro.2005.12.027
Tajima Y, Moore MA, Soares V, Ono M, Kissel H, Besmer P. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc Natl Acad Sci USA. 1998;95:11903–8.
pubmed: 9751763 pmcid: 21738 doi: 10.1073/pnas.95.20.11903
Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.
pubmed: 15864276 doi: 10.1038/nrc1609
Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017;108:296–307.
pubmed: 28064454 pmcid: 5378267 doi: 10.1111/cas.13156
Okamoto W, Okamoto I, Tanaka K, Hatashita E, Yamada Y, Kuwata K, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther. 2010;9:2785–92.
pubmed: 20716641 pmcid: 3208321 doi: 10.1158/1535-7163.MCT-10-0481
Yee NS, Hsiau CW, Serve H, Vosseller K, Besmer P. Mechanism of down-regulation of c-kit receptor. Roles of receptor tyrosine kinase, phosphatidylinositol 3'-kinase, and protein kinase C. J Biol Chem. 1994;269:31991–8.
pubmed: 7527401 doi: 10.1016/S0021-9258(18)31793-9
Shimizu Y, Ashman LK, Du Z, Schwartz LB. Internalization of Kit together with stem cell factor on human fetal liver-derived mast cells: new protein and RNA synthesis are required for reappearance of Kit. J Immunol. 1996;156:3443–9.
pubmed: 8617971 doi: 10.4049/jimmunol.156.9.3443
Lemmon MA, Pinchasi D, Zhou M, Lax I, Schlessinger J. Kit receptor dimerization is driven by bivalent binding of stem cell factor. J Biol Chem. 1997;272:6311–7.
pubmed: 9045650 doi: 10.1074/jbc.272.10.6311
Liu H, Chen X, Focia PJ, He X. Structural basis for stem cell factor-KIT signaling and activation of class III receptor tyrosine kinases. EMBO J. 2007;26:891–901.
pubmed: 17255936 pmcid: 1794399 doi: 10.1038/sj.emboj.7601545
Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130:323–34.
pubmed: 17662946 doi: 10.1016/j.cell.2007.05.055
Krimmer SG, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, et al. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proc Natl Acad Sci USA. 2023;120:e2300054120.
pubmed: 36943885 doi: 10.1073/pnas.2300054120
Huang Z, Ruan HB, Xian L, Chen W, Jiang S, Song A, et al. The stem cell factor/Kit signalling pathway regulates mitochondrial function and energy expenditure. Nat Commun. 2014;5:4282.
pubmed: 24999927 doi: 10.1038/ncomms5282
Merchant JL, Du M, Todisco A. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem Biophys Res Commun. 1999;254:454–61.
pubmed: 9918860 doi: 10.1006/bbrc.1998.9964
Minet E, Ernest I, Michel G, Roland I, Remacle J, Raes M, et al. HIF1A gene transcription is dependent on a core promoter sequence encompassing activating and inhibiting sequences located upstream from the transcription initiation site and cis elements located within the 5'UTR. Biochem Biophys Res Commun. 1999;261:534–40.
pubmed: 10425220 doi: 10.1006/bbrc.1999.0995
Toyota M, Hinoda Y, Takaoka A, Makiguchi Y, Takahashi T, Itoh F, et al. Expression of c-kit and kit ligand in human colon carcinoma cells. Tumour Biol. 1993;14:295–302.
pubmed: 7694350 doi: 10.1159/000217842
Bai C, Liu X, Qiu C, Zheng J. FoxM1 is regulated by both HIF-1alpha and HIF-2alpha and contributes to gastrointestinal stromal tumor progression. Gastric Cancer. 2019;22:91–103.
pubmed: 29948390 doi: 10.1007/s10120-018-0846-6
Huynh K. Meteorin-like protein repairs the ischaemic heart via receptor KIT in endothelial cells. Nat Rev Cardiol. 2022;19:575.
pubmed: 35817873
Medina BD, Liu M, Vitiello GA, Seifert AM, Zeng S, Bowler T, et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J Exp Med. 2019;216:1359–76.
pubmed: 31000683 pmcid: 6547861 doi: 10.1084/jem.20180660
Tieniber AD, Hanna AN, Medina BD, Vitiello GA, Etherington MS, Liu M, et al. Tyrosine kinase inhibition alters intratumoral CD8 + T-cell subtype composition and activity. Cancer Immunol Res. 2022;10:1210–23.
pubmed: 35917579 pmcid: 10309533 doi: 10.1158/2326-6066.CIR-21-1039
Medina BD, Liu M, Vitiello GA, Seifert AM, Zeng S, Bowler T, et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J Exp Med. 2019;216:1359–76.
pubmed: 31000683 pmcid: 6547861 doi: 10.1084/jem.20180660
Seifert AM, Zeng S, Zhang JQ, Kim TS, Cohen NA, Beckman MJ, et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2017;23:454–65.
pubmed: 27470968 doi: 10.1158/1078-0432.CCR-16-1163
Vitiello GA, Medina BD, Zeng S, Bowler TG, Zhang JQ, Loo JK, et al. Mitochondrial inhibition augments the efficacy of imatinib by resetting the metabolic phenotype of gastrointestinal stromal tumor. Clin Cancer Res. 2018;24:972–84.
pubmed: 29246941 doi: 10.1158/1078-0432.CCR-17-2697
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.
pubmed: 25867923 pmcid: 4430369 doi: 10.1038/nbt.3192
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296.
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Liu M, Etherington MS, Hanna A, Medina BD, Vitiello GA, Bowler TG, et al. Oncogenic KIT modulates Type I IFN-mediated antitumor immunity in GIST. Cancer Immunol Res. 2021;9:542–53.
pubmed: 33648985 pmcid: 8102332 doi: 10.1158/2326-6066.CIR-20-0692

Auteurs

Andrew D Tieniber (AD)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Ferdinando Rossi (F)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Andrew N Hanna (AN)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Marion Liu (M)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Mark S Etherington (MS)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Jennifer K Loo (JK)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Nesteene Param (N)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Shan Zeng (S)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Kevin Do (K)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Laura Wang (L)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Ronald P DeMatteo (RP)

Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA. Ronald.dematteo@pennmedicine.upenn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH