A machine learning based approach to identify carotid subclinical atherosclerosis endotypes.
ASCVD
Artificial intelligence
Atherosclerosis
Biological markers
Endotype
Progression of atherosclerosis
Journal
Cardiovascular research
ISSN: 1755-3245
Titre abrégé: Cardiovasc Res
Pays: England
ID NLM: 0077427
Informations de publication
Date de publication:
19 12 2023
19 12 2023
Historique:
received:
07
10
2022
revised:
12
03
2023
accepted:
05
05
2023
medline:
21
12
2023
pubmed:
21
7
2023
entrez:
21
7
2023
Statut:
ppublish
Résumé
To define endotypes of carotid subclinical atherosclerosis. We integrated demographic, clinical, and molecular data (n = 124) with ultrasonographic carotid measurements from study participants in the IMPROVE cohort (n = 3340). We applied a neural network algorithm and hierarchical clustering to identify carotid atherosclerosis endotypes. A measure of carotid subclinical atherosclerosis, the c-IMTmean-max, was used to extract atherosclerosis-related features and SHapley Additive exPlanations (SHAP) to reveal endotypes. The association of endotypes with carotid ultrasonographic measurements at baseline, after 30 months, and with the 3-year atherosclerotic cardiovascular disease (ASCVD) risk was estimated by linear (β, SE) and Cox [hazard ratio (HR), 95% confidence interval (CI)] regression models. Crude estimates were adjusted by common cardiovascular risk factors, and baseline ultrasonographic measures. Improvement in ASCVD risk prediction was evaluated by C-statistic and by net reclassification improvement with reference to SCORE2, c-IMTmean-max, and presence of carotid plaques. An ensemble stacking model was used to predict endotypes in an independent validation cohort, the PIVUS (n = 1061). We identified four endotypes able to differentiate carotid atherosclerosis risk profiles from mild (endotype 1) to severe (endotype 4). SHAP identified endotype-shared variables (age, biological sex, and systolic blood pressure) and endotype-specific biomarkers. In the IMPROVE, as compared to endotype 1, endotype 4 associated with the thickest c-IMT at baseline (β, SE) 0.36 (0.014), the highest number of plaques 1.65 (0.075), the fastest c-IMT progression 0.06 (0.013), and the highest ASCVD risk (HR, 95% CI) (1.95, 1.18-3.23). Baseline and progression measures of carotid subclinical atherosclerosis and ASCVD risk were associated with the predicted endotypes in the PIVUS. Endotypes consistently improved measures of ASCVD risk discrimination and reclassification in both study populations. We report four replicable subclinical carotid atherosclerosis-endotypes associated with progression of atherosclerosis and ASCVD risk in two independent populations. Our approach based on endotypes can be applied for precision medicine in ASCVD prevention.
Identifiants
pubmed: 37475157
pii: 7226279
doi: 10.1093/cvr/cvad106
pmc: PMC10730242
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2594-2606Subventions
Organisme : Stiftelsen Sigurd & Elsa Goljes minne
Organisme : Stiftelsen Professor Nanna Svartz fond
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.
Déclaration de conflit d'intérêts
Conflict of interest: The authors disclose no conflicts of interest related to the present work.
Références
Circulation. 2020 Aug 18;142(7):621-642
pubmed: 32546049
PLoS One. 2014 Apr 22;9(4):e95192
pubmed: 24755770
J Am Coll Cardiol. 2022 May 24;79(20):1969-1982
pubmed: 35589158
Eur Heart J. 2021 Jul 1;42(25):2455-2467
pubmed: 34120185
Clin Chem. 2012 Jan;58(1):172-82
pubmed: 22065155
Cardiovasc Res. 2019 Jan 1;115(1):213-221
pubmed: 30052808
Circulation. 2020 Feb 25;141(8):624-636
pubmed: 31707832
J Am Coll Cardiol. 2019 Sep 24;74(12):1543-1553
pubmed: 31537263
J Am Coll Cardiol. 2020 Apr 14;75(14):1617-1627
pubmed: 32273027
Nat Rev Cardiol. 2022 Feb;19(2):133-143
pubmed: 34497402
Atherosclerosis. 2020 Feb;295:25-30
pubmed: 31981948
Atherosclerosis. 2014 Oct;236(2):394-9
pubmed: 25150937
Arterioscler Thromb Vasc Biol. 2010 Feb;30(2):177-81
pubmed: 19679833
Lancet. 2022 Sep 24;400(10357):997-1007
pubmed: 36063821
Eur Heart J. 2021 Jul 1;42(25):2439-2454
pubmed: 34120177
Curr Res Transl Med. 2023 Jan-Mar;71(1):103374
pubmed: 36493747
EBioMedicine. 2019 Jan;39:109-117
pubmed: 30587458
Signal Transduct Target Ther. 2020 Sep 14;5(1):201
pubmed: 32929074
Ann Thorac Surg. 2015 Feb;99(2):388-92
pubmed: 25639389
J Am Coll Cardiol. 2015 Oct 20;66(16):1828-1836
pubmed: 26483108
JACC Cardiovasc Imaging. 2013 Nov;6(11):1160-7
pubmed: 24229768
JACC Cardiovasc Imaging. 2021 Dec;14(12):2414-2424
pubmed: 34274263
Am J Respir Crit Care Med. 2021 Jun 15;203(12):1488-1502
pubmed: 33332995
J Am Coll Cardiol. 2012 Oct 16;60(16):1489-99
pubmed: 22999719
Rheumatology (Oxford). 2021 Jun 18;60(6):2735-2744
pubmed: 33159799
Nat Metab. 2020 Oct;2(10):1135-1148
pubmed: 33067605
Am J Epidemiol. 2004 May 1;159(9):882-90
pubmed: 15105181
Brief Bioinform. 2021 Jan 18;22(1):393-415
pubmed: 32008043
PLoS Med. 2021 Jan 13;18(1):e1003513
pubmed: 33439866
Arterioscler Thromb Vasc Biol. 2005 Nov;25(11):2368-75
pubmed: 16141402
Eur Heart J. 2010 Mar;31(5):614-22
pubmed: 19952003
Eur Heart J. 2018 Dec 21;39(48):4269-4276
pubmed: 30551207
Circ Cardiovasc Imaging. 2018 Jan;11(1):e006973
pubmed: 29305348
Int J Endocrinol. 2013;2013:182060
pubmed: 23401681
Circulation. 2021 Sep 21;144(12):916-929
pubmed: 34543072
Atherosclerosis. 2022 Apr;346:117-123
pubmed: 35120729
Lancet. 2021 May 29;397(10289):2060-2069
pubmed: 34015342
Diabetes Care. 2020 Jan;43(1):5-12
pubmed: 31753960
Circ Res. 2019 Mar 15;124(6):904-919
pubmed: 30661465
Ann Rheum Dis. 2022 May;81(5):666-675
pubmed: 35246457
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
J Clin Invest. 2020 Jan 2;130(1):29-38
pubmed: 31895052
EBioMedicine. 2022 Jan;75:103776
pubmed: 35027333
Stat Med. 2011 Jan 15;30(1):11-21
pubmed: 21204120
EURASIP J Bioinform Syst Biol. 2017 Dec;2017(1):6
pubmed: 28477207
Lancet. 2023 Jan 21;401(10372):215-225
pubmed: 36563696
Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2273-9
pubmed: 23825364