Thermal transport across membranes and the Kapitza length from photothermal microscopy.
Cell membranes
Kapitza length
Kapitza resistance
Photothermal
Thermal transport
Journal
Journal of biological physics
ISSN: 1573-0689
Titre abrégé: J Biol Phys
Pays: Netherlands
ID NLM: 0417731
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
26
02
2023
accepted:
30
05
2023
pmc-release:
01
09
2024
medline:
4
8
2023
pubmed:
21
7
2023
entrez:
21
7
2023
Statut:
ppublish
Résumé
An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green's function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.
Identifiants
pubmed: 37477759
doi: 10.1007/s10867-023-09636-0
pii: 10.1007/s10867-023-09636-0
pmc: PMC10397174
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
365-381Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM142012
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Anal Chem. 2022 Oct 18;94(41):14242-14250
pubmed: 36197677
Nat Photonics. 2011 Feb;5(2):110-116
pubmed: 25558274
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2288-2293
pubmed: 31964821
Sci Adv. 2021 Jan 15;7(3):
pubmed: 33523906
Phys Rev Lett. 2006 May 12;96(18):186101
pubmed: 16712374
Science. 2020 Jan 31;367(6477):555-559
pubmed: 31919128
Langmuir. 2018 Aug 21;34(33):9798-9809
pubmed: 30088940
Nat Commun. 2012 Feb 28;3:705
pubmed: 22426226
Proteins. 1995 Aug;22(4):404-12
pubmed: 7479713
Commun Biol. 2021 Dec 9;4(1):1377
pubmed: 34887517
ACS Nano. 2020 Dec 22;14(12):16414-16445
pubmed: 33216527
Phys Chem Chem Phys. 2010 Feb 21;12(7):1610-7
pubmed: 20126777
ACS Photonics. 2014 Aug 20;1(8):696-702
pubmed: 25541620
Nat Commun. 2021 May 19;12(1):2921
pubmed: 34012021
Sci Adv. 2016 Sep 28;2(9):e1600521
pubmed: 27704043
Nat Commun. 2021 Dec 7;12(1):7097
pubmed: 34876556
J Phys Chem B. 2017 Sep 21;121(37):8838-8846
pubmed: 28741348
J Chem Phys. 2010 Oct 21;133(15):154705
pubmed: 20969417
Opt Express. 2019 Feb 4;27(3):2643-2655
pubmed: 30732299
Anal Chem. 2021 Mar 2;93(8):4100-4107
pubmed: 33596049
PLoS One. 2017 Feb 17;12(2):e0172344
pubmed: 28212432
Analyst. 2017 May 30;142(11):1882-1890
pubmed: 28275761
Nat Methods. 2014 Sep;11(9):899-901
pubmed: 25166869
Annu Rev Biophys Biomol Struct. 2007;36:107-30
pubmed: 17263662
J Am Chem Soc. 2021 Aug 4;143(30):11490-11499
pubmed: 34264654
Biophys Rev. 2020 Apr;12(2):593-600
pubmed: 32172449
Phys Rev Lett. 2004 Dec 17;93(25):257402
pubmed: 15697940
J R Soc Interface. 2017 May;14(130):
pubmed: 28539484
Biomed Opt Express. 2020 Dec 14;12(1):303-319
pubmed: 33520386
J Biomed Opt. 2018 Dec;23(12):1-6
pubmed: 30554503
Sci Adv. 2019 Jul 19;5(7):eaav7127
pubmed: 31334347
ACS Photonics. 2021 Nov 17;8(11):3323-3336
pubmed: 35966035
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1511-1516
pubmed: 29378944
Science. 2010 Oct 15;330(6002):353-6
pubmed: 20947760