Towards precision medicine in non-alcoholic fatty liver disease.


Journal

Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588

Informations de publication

Date de publication:
10 2023
Historique:
accepted: 21 06 2023
medline: 11 9 2023
pubmed: 21 7 2023
entrez: 21 7 2023
Statut: ppublish

Résumé

Non-Alcoholic Fatty Liver Disease (NAFLD) refers to the accumulation of lipid laden vacuoles in hepatocytes, occurring in the context of visceral adiposity, insulin resistance and other features of the metabolic syndrome. Its more severe form (NASH, Non-Alcoholic Steatohepatitis) is becoming the leading aetiology of end-stage liver disease and hepatocellular carcinoma, and also contributes to cardiovascular disease, diabetes and extrahepatic malignancy. Management is currently limited to lifestyle modification and optimisation of the metabolic co-morbidities, with some of the drugs used for the latter also having shown some benefit for the liver. Licensed treatment modalities are currently lacking. A particular difficulty is the notorious heterogeneity of the patient population, which is poorly understood. A spectrum of disease severity associates in a non-linear way with a spectrum of severity of underlying metabolic factors. Heterogeneity of the liver in terms of mechanisms to cope with the metabolic and inflammatory stress and in terms of repair mechanisms, and a lack of knowledge hereof, further complicate the understanding of inter-individual variability. Genetic factors act as disease modifiers and potentially allow for some risk stratification, but also only explain a minor fraction of disease heterogeneity. Response to treatment shows a large variation in treatment response, again with little understanding of what is driving the absence of response in individual patients. Management can be tailored to patient's preferences in terms of diet modification, but tailoring treatment to knowledge on disease driving mechanisms in an individual patient is still in its infancy. Recent progress in analysing liver tissue as well as non-invasive tests hold, however, promise to rapidly improve our understanding of disease heterogeneity in NAFLD and provide individualised management.

Identifiants

pubmed: 37477772
doi: 10.1007/s11154-023-09820-6
pii: 10.1007/s11154-023-09820-6
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

885-899

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V, et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402. https://doi.org/10.1016/j.jhep.2015.11.004 .
doi: 10.1016/j.jhep.2015.11.004
Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181–205. https://doi.org/10.1146/annurev-physiol-021115-105331 .
doi: 10.1146/annurev-physiol-021115-105331 pubmed: 26667070
Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation. 2009;120:1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644 .
doi: 10.1161/CIRCULATIONAHA.109.192644 pubmed: 19805654
Ayonrinde OT. Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD – Reconciling the present with the past. JHEP Rep. 2021;3:100261. https://doi.org/10.1016/j.jhepr.2021.100261 .
doi: 10.1016/j.jhepr.2021.100261 pubmed: 34036255 pmcid: 8135048
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77:1797–835. https://doi.org/10.1097/HEP.0000000000000323 .
doi: 10.1097/HEP.0000000000000323 pubmed: 36727674
Ratziu V, Rinella M, Beuers U, Loomba R, Anstee QM, Harrison S, et al. The times they are a-changin’ (for NAFLD as well). J Hepatol. 2020;73:1307–9. https://doi.org/10.1016/j.jhep.2020.08.028 .
doi: 10.1016/j.jhep.2020.08.028 pubmed: 32890593
Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019;1:312–28. https://doi.org/10.1016/j.jhepr.2019.07.002 .
doi: 10.1016/j.jhepr.2019.07.002 pubmed: 32039382 pmcid: 7001557
Chiang DJ, McCullough AJ. The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin Liver Dis. 2014;18:157–63. https://doi.org/10.1016/j.cld.2013.09.006 .
doi: 10.1016/j.cld.2013.09.006 pubmed: 24274871
van Kleef LA, Choi HSJ, Brouwer WP, Hansen BE, Patel K, de Man RA, et al. Metabolic dysfunction-associated fatty liver disease increases risk of adverse outcomes in patients with chronic hepatitis B. JHEP Rep. 2021;3:100350. https://doi.org/10.1016/j.jhepr.2021.100350 .
doi: 10.1016/j.jhepr.2021.100350 pubmed: 34557660 pmcid: 8446794
Ratziu V, Anstee QM, Wong VW-S, Schattenberg JM, Bugianesi E, Augustin S, et al. An international survey on patterns of practice in NAFLD and expectations for therapies-The POP-NEXT project. Hepatology. 2022;76:1766–77. https://doi.org/10.1002/hep.32500 .
doi: 10.1002/hep.32500 pubmed: 35363906
Eslam M, Sanyal AJ, George J, International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014. https://doi.org/10.1053/j.gastro.2019.11.312 .
doi: 10.1053/j.gastro.2019.11.312 pubmed: 32044314
Després J-P. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126:1301–13. https://doi.org/10.1161/CIRCULATIONAHA.111.067264 .
doi: 10.1161/CIRCULATIONAHA.111.067264 pubmed: 22949540
Lembo E, Russo MF, Verrastro O, Anello D, Angelini G, Iaconelli A, et al. Prevalence and predictors of non-alcoholic steatohepatitis in subjects with morbid obesity and with or without type 2 diabetes. Diabetes Metab. 2022;48:101363. https://doi.org/10.1016/j.diabet.2022.101363 .
doi: 10.1016/j.diabet.2022.101363 pubmed: 35760372
Su W, Mao Z, Liu Y, Zhang X, Zhang W, Gustafsson J-A, et al. Role of HSD17B13 in the liver physiology and pathophysiology. Mol Cell Endocrinol. 2019;489:119–25. https://doi.org/10.1016/j.mce.2018.10.014 .
doi: 10.1016/j.mce.2018.10.014 pubmed: 30365983
Amangurbanova M, Huang DQ, Loomba R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment Pharmacol Ther. 2023;57:37–51. https://doi.org/10.1111/apt.17292 .
doi: 10.1111/apt.17292 pubmed: 36349732
Su W, Wu S, Yang Y, Guo Y, Zhang H, Su J, et al. Phosphorylation of 17β-hydroxysteroid dehydrogenase 13 at serine 33 attenuates nonalcoholic fatty liver disease in mice. Nat Commun. 2022;13:6577. https://doi.org/10.1038/s41467-022-34299-1 .
doi: 10.1038/s41467-022-34299-1 pubmed: 36323699 pmcid: 9630536
Wang M, Li J, Li H, Dong B, Jiang J, Liu N, et al. Down-regulating the high level of 17-beta-hydroxysteroid dehydrogenase 13 plays a therapeutic role for non-alcoholic fatty liver disease. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23105544 .
doi: 10.3390/ijms23105544 pubmed: 36555868 pmcid: 9788540
Kalinowski P, Smyk W, Nowosad M, Paluszkiewicz R, Michałowski Ł, Ziarkiewicz-Wróblewska B, et al. MTARC1 and HSD17B13 variants have protective effects on non-alcoholic fatty liver disease in patients undergoing bariatric surgery. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms232415825 .
doi: 10.3390/ijms232415825 pubmed: 36555467 pmcid: 9781679
Ratziu V, Francque S, Sanyal A. Breakthroughs in therapies for NASH and remaining challenges. J Hepatol. 2022;76:1263–78. https://doi.org/10.1016/j.jhep.2022.04.002 .
doi: 10.1016/j.jhep.2022.04.002 pubmed: 35589249
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48. https://doi.org/10.1016/J.METABOL.2015.12.012 .
doi: 10.1016/J.METABOL.2015.12.012 pubmed: 26823198
Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol. 2019;10:82. https://doi.org/10.3389/fimmu.2019.00082 .
doi: 10.3389/fimmu.2019.00082 pubmed: 30787925 pmcid: 6372559
Kwanten WJ, Martinet W, Francque SM. Autophagy in non-alcoholic fatty liver disease (NAFLD). Autophagy Curr Trends Cell Physiol Pathol InTech. 2016.  https://doi.org/10.5772/64534 .
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022;34:1700–18. https://doi.org/10.1016/j.cmet.2022.09.017 .
doi: 10.1016/j.cmet.2022.09.017 pubmed: 36208625
Dumond Bourie A, Potier J-B, Pinget M, Bouzakri K. Myokines: Crosstalk and consequences on liver physiopathology. Nutrients. 2023;15:1729. https://doi.org/10.3390/nu15071729 .
doi: 10.3390/nu15071729 pubmed: 37049569 pmcid: 10096786
Nachit M, Kwanten WJ, Thissen J-P, Op De Beeck B, Van Gaal L, Vonghia L, et al. Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. J Hepatol. 2021;75:292–301. https://doi.org/10.1016/j.jhep.2021.02.037 .
doi: 10.1016/j.jhep.2021.02.037 pubmed: 33865909
Francque S, Ratziu V. Future treatment options and regimens for nonalcoholic fatty liver disease. Clin Liver Dis. 2023;27:429–49. https://doi.org/10.1016/j.cld.2023.01.010 .
doi: 10.1016/j.cld.2023.01.010 pubmed: 37024217
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol. 2018;68:238–50. https://doi.org/10.1016/J.JHEP.2017.11.012 .
doi: 10.1016/J.JHEP.2017.11.012 pubmed: 29154966
Golabi P, Isakov V, Younossi ZM. Nonalcoholic fatty liver disease: Disease burden and disease awareness. Clin Liver Dis. 2023;27:173–86. https://doi.org/10.1016/j.cld.2023.01.001 .
doi: 10.1016/j.cld.2023.01.001 pubmed: 37024201
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335–47. https://doi.org/10.1097/HEP.0000000000000004 .
doi: 10.1097/HEP.0000000000000004 pubmed: 36626630
Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Reports. 2021;3:100305. https://doi.org/10.1016/j.jhepr.2021.100305 .
doi: 10.1016/j.jhepr.2021.100305 pubmed: 34189448 pmcid: 8215299
Quek J, Chan KE, Wong ZY, Tan C, Tan B, Lim WH, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8:20–30. https://doi.org/10.1016/S2468-1253(22)00317-X .
doi: 10.1016/S2468-1253(22)00317-X pubmed: 36400097
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, et al. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol. 2022;19:638–51. https://doi.org/10.1038/s41575-022-00635-5 .
doi: 10.1038/s41575-022-00635-5 pubmed: 35710982
Saponaro C, Sabatini S, Gaggini M, Carli F, Rosso C, Positano V, et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 2022;42:2418–27. https://doi.org/10.1111/liv.15377 .
doi: 10.1111/liv.15377 pubmed: 35900229
Younes R, Govaere O, Petta S, Miele L, Tiniakos D, Burt A, et al. Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: time for reappraisal of BMI-driven approach? Gut. 2022 Feb;71(2):382–90. https://doi.org/10.1136/gutjnl-2020-322564 .
Francque SMA, Dirinck E. NAFLD prevalence and severity in overweight and obese populations. Lancet Gastroenterol Hepatol. 2023;8:2–3. https://doi.org/10.1016/S2468-1253(22)00375-2 .
doi: 10.1016/S2468-1253(22)00375-2 pubmed: 36400096
Yip TC-F, Vilar-Gomez E, Petta S, Yilmaz Y, Wong GL-H, Adams LA, et al. Geographical similarity and differences in the burden and genetic predisposition of NAFLD. Hepatology. 2022. https://doi.org/10.1002/hep.32774 .
doi: 10.1002/hep.32774 pubmed: 36062393
Le MH, Le DM, Baez TC, Wu Y, Ito T, Lee EY, et al. Global incidence of non-alcoholic fatty liver disease: a systematic review and meta-analysis of 63 studies and 1,201,807 persons. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.03.040 .
doi: 10.1016/j.jhep.2023.03.040 pubmed: 37040843
Vandel J, Dubois-Chevalier J, Gheeraert C, Derudas B, Raverdy V, Thuillier D, et al. Hepatic molecular signatures highlight the sexual dimorphism of nonalcoholic steatohepatitis (NASH). Hepatology. 2021;73:920–36. https://doi.org/10.1002/hep.31312 .
doi: 10.1002/hep.31312 pubmed: 32394476
Carrieri L, Osella AR, Ciccacci F, Giannelli G, Scavo MP. Premenopausal syndrome and NAFLD: A new approach based on gender medicine. Biomedicines. 2022;10:1184. https://doi.org/10.3390/biomedicines10051184 .
doi: 10.3390/biomedicines10051184 pubmed: 35625920 pmcid: 9138606
Bin WY, Seo SK, Yun BH, Cho S, Choi YS, Lee BS. Non-alcoholic fatty liver disease in polycystic ovary syndrome women. Sci Rep. 2021;11:7085. https://doi.org/10.1038/s41598-021-86697-y .
doi: 10.1038/s41598-021-86697-y
Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367-378.e5. https://doi.org/10.1053/j.gastro.2015.04.005 .
doi: 10.1053/j.gastro.2015.04.005 pubmed: 25865049
Wang Z, Du H, Zhao Y, Ren Y, Ma C, Chen H, et al. Response to pioglitazone in non-alcoholic fatty liver disease patients with vs. without type 2 diabetes: A meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2023;14. https://doi.org/10.3389/fendo.2023.1111430 .
doi: 10.3389/fendo.2023.1111430 pubmed: 37680890 pmcid: 10410466
Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. The Lancet. 2016;387:679–90. https://doi.org/10.1016/S0140-6736(15)00803-X .
doi: 10.1016/S0140-6736(15)00803-X
Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384:1113–24. https://doi.org/10.1056/NEJMoa2028395 .
doi: 10.1056/NEJMoa2028395 pubmed: 33185364
Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, Sanyal AJ, et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N Engl J Med. 2021;385:1547–58. https://doi.org/10.1056/NEJMoa2036205 .
doi: 10.1056/NEJMoa2036205 pubmed: 34670042
Harrison SA, Frias JP, Neff GW, Abrams GA, Lucas KJ, Sanchez W, et al. Efruxifermin (EFX) in nonalcoholic steatohepatitis with fibrosis: Results from a randomized, double-blind, placebo-controlled, phase 2b trial (Harmony). Hepatology. 2022;76(S1):5006.
Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394:2184–96. https://doi.org/10.1016/S0140-6736(19)33041-7 .
doi: 10.1016/S0140-6736(19)33041-7 pubmed: 31813633
Harrison S, Bedossa P, Guy C, Schattenberg J, Loomba, R et al. Primary results from MAESTRO-NASH a pivotal phase 3 52-week serial liver biopsy study in 966 patients with NASH and fibrosis. J Hep 2023;78(S1):GS-001.
Ampuero J, Aller R, Gallego-Durán R, Banales JM, Crespo J, García-Monzón C, et al. The effects of metabolic status on non-alcoholic fatty liver disease-related outcomes, beyond the presence of obesity. Aliment Pharmacol Ther. 2018;48:1260–70. https://doi.org/10.1111/apt.15015 .
doi: 10.1111/apt.15015 pubmed: 30353552
Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49:17–26. https://doi.org/10.1038/ng.3714 .
doi: 10.1038/ng.3714 pubmed: 27841877
Beals JW, Smith GI, Shankaran M, Fuchs A, Schweitzer GG, Yoshino J, et al. Increased adipose tissue fibrogenesis, not impaired expandability, is associated with nonalcoholic fatty liver disease. Hepatology. 2021;74:1287–99. https://doi.org/10.1002/hep.31822 .
doi: 10.1002/hep.31822 pubmed: 33743554
Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. Cell Metab. 2017;25:1027–36. https://doi.org/10.1016/j.cmet.2017.04.015 .
doi: 10.1016/j.cmet.2017.04.015 pubmed: 28467922 pmcid: 5513193
Chouchani ET, Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab. 2019;1:189–200. https://doi.org/10.1038/s42255-018-0021-8 .
doi: 10.1038/s42255-018-0021-8 pubmed: 31903450 pmcid: 6941795
Begaye B, Vinales KL, Hollstein T, Ando T, Walter M, Bogardus C, et al. Impaired metabolic flexibility to high-fat overfeeding predicts future weight gain in healthy adults. Diabetes. 2020;69:181–92. https://doi.org/10.2337/db19-0719 .
doi: 10.2337/db19-0719 pubmed: 31712321
Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. 2020;161. https://doi.org/10.1210/endocr/bqaa017 .
doi: 10.1210/endocr/bqaa017 pubmed: 32060542 pmcid: 7341556
Rachek LI. Free fatty acids and skeletal muscle insulin resistance. Prog Mol Biol Transl Sci . 2014;267–92. https://doi.org/10.1016/B978-0-12-800101-1.00008-9 .
Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295:E1009–17. https://doi.org/10.1152/ajpendo.90558.2008 .
doi: 10.1152/ajpendo.90558.2008 pubmed: 18765680 pmcid: 2584808
Ukropcova B, Sereda O, de Jonge L, Bogacka I, Nguyen T, Xie H, et al. Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes. 2007;56:720–7. https://doi.org/10.2337/db06-0521 .
doi: 10.2337/db06-0521 pubmed: 17327442
Gastaldelli A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clin Sci. 2017;131:2701–4. https://doi.org/10.1042/CS20170987 .
doi: 10.1042/CS20170987
Piaggi P. Metabolic determinants of weight gain in humans. Obesity (Silver Spring). 2019;27:691–9. https://doi.org/10.1002/oby.22456 .
doi: 10.1002/oby.22456 pubmed: 31012296
Chen F, Esmaili S, Rogers GB, Bugianesi E, Petta S, Marchesini G, et al. Lean NAFLD: A distinct entity shaped by differential metabolic adaptation. Hepatology. 2020;71:1213–27. https://doi.org/10.1002/hep.30908 .
doi: 10.1002/hep.30908 pubmed: 31442319
Keipert S, Lutter D, Schroeder BO, Brandt D, Ståhlman M, Schwarzmayr T, et al. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nat Commun. 2020;11:624. https://doi.org/10.1038/s41467-019-14069-2 .
doi: 10.1038/s41467-019-14069-2 pmcid: 6994690
Bayoumi A, Elsayed A, Han S, Petta S, Adams LA, Aller R, et al. Mistranslation drives alterations in protein levels and the effects of a synonymous variant at the fibroblast growth factor 21 locus. Advanced Science. 2021;8:2004168. https://doi.org/10.1002/advs.202004168 .
doi: 10.1002/advs.202004168 pubmed: 34141520 pmcid: 8188187
Bulik CM, Allison DB. The genetic epidemiology of thinness. Obes Rev. 2001;2:107–15. https://doi.org/10.1046/j.1467-789x.2001.00030.x .
doi: 10.1046/j.1467-789x.2001.00030.x pubmed: 12119662
Riveros-McKay F, Mistry V, Bounds R, Hendricks A, Keogh JM, Thomas H, et al. Genetic architecture of human thinness compared to severe obesity. PLoS Genet. 2019;15:e1007603. https://doi.org/10.1371/journal.pgen.1007603 .
doi: 10.1371/journal.pgen.1007603 pubmed: 30677029 pmcid: 6345421
Alqahtani SA, Chan W-K, Yu M-L. Hepatic outcomes of nonalcoholic fatty liver disease including cirrhosis and hepatocellular carcinoma. Clin Liver Dis. 2023;27:211–23. https://doi.org/10.1016/j.cld.2023.01.019 .
doi: 10.1016/j.cld.2023.01.019 pubmed: 37024203
Taylor RS, Taylor RJ, Bayliss S, Hagström H, Nasr P, Schattenberg JM, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology. 2020;158. https://doi.org/10.1053/j.gastro.2020.01.043 .
doi: 10.1053/j.gastro.2020.01.043 pubmed: 32027911
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, et al. American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the american association for the study of liver diseases (AASLD). Endocr Pract. 2022;28:528–62. https://doi.org/10.1016/j.eprac.2022.03.010 .
doi: 10.1016/j.eprac.2022.03.010 pubmed: 35569886
Anstee QM, Hallsworth K, Lynch N, Hauvespre A, Mansour E, Kozma S, et al. Real-world management of non-alcoholic steatohepatitis differs from clinical practice guideline recommendations and across regions. JHEP Rep. 2022;4:100411. https://doi.org/10.1016/j.jhepr.2021.100411 .
doi: 10.1016/j.jhepr.2021.100411 pubmed: 34977520
Archer AJ, Belfield KJ, Orr JG, Gordon FH, Abeysekera KW. EASL clinical practice guidelines: non-invasive liver tests for evaluation of liver disease severity and prognosis. Frontline Gastroenterol. 2022;13:436–9. https://doi.org/10.1136/flgastro-2021-102064 .
doi: 10.1136/flgastro-2021-102064 pubmed: 36051951 pmcid: 9380759
Francque SMA, Verrijken A, Mertens I, Hubens G, Van Marck E, Pelckmans P, et al. Noninvasive assessment of nonalcoholic fatty liver disease in obese or overweight patients. Clin Gastroenterol Hepatol. 2012;10:1162–8. https://doi.org/10.1016/j.cgh.2012.06.019 .
doi: 10.1016/j.cgh.2012.06.019 pubmed: 22796457
Canivet CM, Costentin C, Irvine KM, Delamarre A, Lannes A, Sturm N, et al. Validation of the new 2021 EASL algorithm for the noninvasive diagnosis of advanced fibrosis in NAFLD. Hepatology. 2023;77:920–30. https://doi.org/10.1002/hep.32665 .
doi: 10.1002/hep.32665 pubmed: 35822302
Mertens J, Weyler J, Dirinck E, Vonghia L, Kwanten WJ, Mortelmans L, et al. Prevalence, risk factors and diagnostic accuracy of non-invasive tests for NAFLD in people with type 1 diabetes. JHEP Rep. 2023;5:100753. https://doi.org/10.1016/j.jhepr.2023.100753 .
doi: 10.1016/j.jhepr.2023.100753 pubmed: 37274774 pmcid: 10232726
Glass O, Filozof C, Noureddin M, Berner-Hansen M, Schabel E, Omokaro SO, et al. Standardisation of diet and exercise in clinical trials of NAFLD-NASH: Recommendations from the Liver Forum. J Hepatol. 2020;73:680–93. https://doi.org/10.1016/j.jhep.2020.04.030 .
doi: 10.1016/j.jhep.2020.04.030 pubmed: 32353483
Francque SM, Marchesini G, Kautz A, Walmsley M, Dorner R, Lazarus JV, et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3:100322. https://doi.org/10.1016/j.jhepr.2021.100322 .
doi: 10.1016/j.jhepr.2021.100322 pubmed: 34693236 pmcid: 8514420
Pais R, Cariou B, Noureddin M, Francque S, Schattenberg JM, Abdelmalek MF, et al. A proposal from the Liver Forum for the management of comorbidities in nonalcoholic steatohepatitis therapeutic trials. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.03.014 .
doi: 10.1016/j.jhep.2023.03.014 pubmed: 37001695
Lazarus JV, Anstee QM, Hagström H, Cusi K, Cortez-Pinto H, Mark HE, et al. Defining comprehensive models of care for NAFLD. Nat Rev Gastroenterol Hepatol. 2021;18:717–29. https://doi.org/10.1038/s41575-021-00477-7 .
doi: 10.1038/s41575-021-00477-7 pubmed: 34172937
Perdomo CM, Frühbeck G, Escalada J. Impact of nutritional changes on nonalcoholic fatty liver disease. Nutrients. 2019;11. https://doi.org/10.3390/nu11030677 .
doi: 10.3390/nu11030677 pubmed: 30901929 pmcid: 6470750
Romero-Gómez M, Aller R, Martín-Bermudo F. Dietary recommendations for the management of non-alcoholic fatty liver disease (NAFLD): A nutritional geometry perspective. Semin Liver Dis. 2022;42:434–45. https://doi.org/10.1055/s-0042-1757711 .
doi: 10.1055/s-0042-1757711 pubmed: 36307105
Lassailly G, Caiazzo R, Ntandja-Wandji L-C, Gnemmi V, Baud G, Verkindt H, et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology. 2020;159:1290-1301.e5. https://doi.org/10.1053/j.gastro.2020.06.006 .
doi: 10.1053/j.gastro.2020.06.006 pubmed: 32553765
Pais R, Aron-Wisnewsky J, Bedossa P, Ponnaiah M, Oppert J-M, Siksik J-M, et al. Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology. 2022;76:456–68. https://doi.org/10.1002/hep.32358 .
doi: 10.1002/hep.32358 pubmed: 35076966
Verrastro O, Panunzi S, Castagneto-Gissey L, De Gaetano A, Lembo E, Capristo E, et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet. 2023;401:1786–97. https://doi.org/10.1016/S0140-6736(23)00634-7 .
doi: 10.1016/S0140-6736(23)00634-7 pubmed: 37088093
Francque S, Vonghia L. Pharmacological treatment for non-alcoholic fatty liver disease. Adv Ther. 2019;36:1052–74. https://doi.org/10.1007/s12325-019-00898-6 .
doi: 10.1007/s12325-019-00898-6 pubmed: 30888594 pmcid: 6824365
Hiruma S, Shigiyama F, Kumashiro N. Empagliflozin versus sitagliptin for ameliorating intrahepatic lipid content and tissue-specific insulin sensitivity in patients with early-stage type 2 diabetes with non-alcoholic fatty liver disease: A prospective randomized study. Diabetes Obes Metab. 2023. https://doi.org/10.1111/dom.15006 .
doi: 10.1111/dom.15006 pubmed: 36749298
Gastaldelli A, Cusi K, Fernández Landó L, Bray R, Brouwers B, Rodríguez Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10:393–406. https://doi.org/10.1016/S2213-8587(22)00070-5 .
doi: 10.1016/S2213-8587(22)00070-5 pubmed: 35468325
Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet. 2023;401:1116–30. https://doi.org/10.1016/S0140-6736(22)02403-5 .
doi: 10.1016/S0140-6736(22)02403-5 pubmed: 36774932
Siddiqui MS, Harrison SA, Abdelmalek MF, Anstee QM, Bedossa P, Castera L, et al. Case definitions for inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens of regulatory science. Hepatology. 2018;67:2001–12. https://doi.org/10.1002/hep.29607 .
doi: 10.1002/hep.29607 pubmed: 29059456
Rinella ME, Tacke F, Sanyal AJ, Anstee QM, participants of the AASLD/EASL Workshop. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J Hepatol. 2019;71:823–33. https://doi.org/10.1016/j.jhep.2019.04.019 .
doi: 10.1016/j.jhep.2019.04.019 pubmed: 31300231
Sanyal AJ, Anstee QM, Trauner M, Lawitz EJ, Abdelmalek MF, Ding D, et al. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology. 2022;75:1235–46. https://doi.org/10.1002/hep.32204 .
doi: 10.1002/hep.32204 pubmed: 34662449
https://www.ema.europa.eu/en/draft-reflection-paper-regulatory-requirements-development-medicinal-products-chronic-non-infectious n.d.
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/nonalcoholic-steatohepatitis-compensated-cirrhosis-developing-drugs-treatment-guidance-industry n.d.
Ratziu V, de Guevara L, Safadi R, Poordad F, Fuster F, Flores-Figueroa J, et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial. Nat Med. 2021;27:1825–35. https://doi.org/10.1038/s41591-021-01495-3 .
doi: 10.1038/s41591-021-01495-3 pubmed: 34621052
Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147-1159.e5. https://doi.org/10.1053/j.gastro.2016.01.038 .
doi: 10.1053/j.gastro.2016.01.038 pubmed: 26874076
Caussy C, Soni M, Cui J, Bettencourt R, Schork N, Chen C-H, et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J Clin Investig. 2017;127:2697–704. https://doi.org/10.1172/JCI93465 .
doi: 10.1172/JCI93465 pubmed: 28628033 pmcid: 5490764
Tamaki N, Ahlholm N, Luukkonen PK, Porthan K, Sharpton SR, Ajmera V, et al. Risk of advanced fibrosis in first-degree relatives of patients with nonalcoholic fatty liver disease. J Clin Invest. 2022;132. https://doi.org/10.1172/JCI162513 .
doi: 10.1172/JCI162513 pubmed: 36317632 pmcid: 9621132
Abdelmalek MF, Liu C, Shuster J, Nelson DR, Asal NR. Familial aggregation of insulin resistance in first-degree relatives of patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006;4:1162–9. https://doi.org/10.1016/j.cgh.2006.06.001 .
doi: 10.1016/j.cgh.2006.06.001 pubmed: 16901766
Loomba R, Schork N, Chen C-H, Bettencourt R, Bhatt A, Ang B, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology. 2015;149:1784–93. https://doi.org/10.1053/j.gastro.2015.08.011 .
doi: 10.1053/j.gastro.2015.08.011 pubmed: 26299412
Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, Tiniakos D, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol. 2020;73:505–15. https://doi.org/10.1016/j.jhep.2020.04.003 .
doi: 10.1016/j.jhep.2020.04.003 pubmed: 32298765
Dongiovanni P. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol. 2013;19:6969. https://doi.org/10.3748/wjg.v19.i41.6969 .
doi: 10.3748/wjg.v19.i41.6969 pubmed: 24222941 pmcid: 3819533
Liu Y-L, Patman GL, Leathart JBS, Piguet A-C, Burt AD, Dufour J-F, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61:75–81. https://doi.org/10.1016/j.jhep.2014.02.030 .
doi: 10.1016/j.jhep.2014.02.030 pubmed: 24607626
Trépo E, Caruso S, Yang J, Imbeaud S, Couchy G, Bayard Q, et al. Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncol. 2022;23:161–71. https://doi.org/10.1016/S1470-2045(21)00603-3 .
doi: 10.1016/S1470-2045(21)00603-3 pubmed: 34902334
Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A, et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014;1841:574–80. https://doi.org/10.1016/j.bbalip.2013.12.006 .
doi: 10.1016/j.bbalip.2013.12.006 pubmed: 24369119
BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66:1111–24. https://doi.org/10.1002/hep.29273 .
doi: 10.1002/hep.29273 pubmed: 28520213
Lindén D, Ahnmark A, Pingitore P, Ciociola E, Ahlstedt I, Andréasson A-C, et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019;22:49–61. https://doi.org/10.1016/j.molmet.2019.01.013 .
doi: 10.1016/j.molmet.2019.01.013 pubmed: 30772256 pmcid: 6437635
Elbashir SM. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–88. https://doi.org/10.1093/emboj/20.23.6877 .
doi: 10.1093/emboj/20.23.6877 pubmed: 11726523 pmcid: 125328
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, et al. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: Protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol. 2011;125:66–82. https://doi.org/10.1016/j.jsbmb.2010.12.013 .
doi: 10.1016/j.jsbmb.2010.12.013
Luukkonen PK, Tukiainen T, Juuti A, Sammalkorpi H, Haridas PAN, Niemelä O, et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight. 2020;5. https://doi.org/10.1172/jci.insight.132158 .
doi: 10.1172/jci.insight.132158 pubmed: 32161197 pmcid: 7141400
Ma Y, Belyaeva OV, Brown PM, Fujita K, Valles K, Karki S, et al. 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology. 2019;69:1504–19. https://doi.org/10.1002/hep.30350 .
doi: 10.1002/hep.30350 pubmed: 30415504
Longo M, Meroni M, Paolini E, Erconi V, Carli F, Fortunato F, et al. TM6SF2/PNPLA3/MBOAT7 loss-of-function genetic variants impact on NAFLD development and progression both in patients and in in vitro models. Cell Mol Gastroenterol Hepatol. 2022;13:759–88. https://doi.org/10.1016/j.jcmgh.2021.11.007 .
doi: 10.1016/j.jcmgh.2021.11.007 pubmed: 34823063
Luukkonen PK, Juuti A, Sammalkorpi H, Penttilä AK, Orešič M, Hyötyläinen T, et al. MARC1 variant rs2642438 increases hepatic phosphatidylcholines and decreases severity of non-alcoholic fatty liver disease in humans. J Hepatol. 2020;73:725–6. https://doi.org/10.1016/j.jhep.2020.04.021 .
doi: 10.1016/j.jhep.2020.04.021 pubmed: 32471727
Jamialahmadi O, Mancina RM, Ciociola E, Tavaglione F, Luukkonen PK, Baselli G, et al. Exome-wide association study on alanine aminotransferase identifies sequence variants in the gpam and apoe associated with fatty liver disease. Gastroenterology. 2021;160:1634-1646.e7. https://doi.org/10.1053/j.gastro.2020.12.023 .
doi: 10.1053/j.gastro.2020.12.023 pubmed: 33347879
Palmer ND, Kahali B, Kuppa A, Chen Y, Du X, Feitosa MF, et al. Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer’s disease and myocardial infarction. Hum Mol Genet. 2021;30:1443–56. https://doi.org/10.1093/hmg/ddab096 .
doi: 10.1093/hmg/ddab096 pubmed: 33856023 pmcid: 8283205
Kitamoto A, Kitamoto T, Nakamura T, Ogawa Y, Yoneda M, Hyogo H, et al. Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits. Endocr J. 2014;61:683–9. https://doi.org/10.1507/endocrj.ej14-0052 .
doi: 10.1507/endocrj.ej14-0052 pubmed: 24785259
Bianco C, Tavaglione F, Romeo S, Valenti L. Genetic risk scores and personalization of care in fatty liver disease. Curr Opin Pharmacol. 2021;61:6–11. https://doi.org/10.1016/j.coph.2021.08.014 .
doi: 10.1016/j.coph.2021.08.014 pubmed: 34537584
Chen VL, Oliveri A, Miller MJ, Wijarnpreecha K, Du X, Chen Y, et al. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis. Gastroenterology. 2023. https://doi.org/10.1053/j.gastro.2023.01.040 .
doi: 10.1053/j.gastro.2023.01.040 pubmed: 37678500 pmcid: 10463328
De Vincentis A, Tavaglione F, Jamialahmadi O, Picardi A, Antonelli Incalzi R, Valenti L, et al. A polygenic risk score to refine risk stratification and prediction for severe liver disease by clinical fibrosis scores. Clin Gastroenterol Hepatol. 2022;20:658–73. https://doi.org/10.1016/j.cgh.2021.05.056 .
doi: 10.1016/j.cgh.2021.05.056 pubmed: 34091049
Dongiovanni P, Valenti L. A nutrigenomic approach to non-alcoholic fatty liver disease. Int J Mol Sci. 2017;18:1534. https://doi.org/10.3390/ijms18071534 .
doi: 10.3390/ijms18071534 pubmed: 28714900 pmcid: 5536022
Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. J Hepatol. 2015;63:1476–83. https://doi.org/10.1016/j.jhep.2015.07.036 .
doi: 10.1016/j.jhep.2015.07.036 pubmed: 26272871
Kalafati I. Genetics of Nonalcoholic Fatty Liver Disease: Role of Diet as a modifying factor. Clin Nut. 2014;3:223–32.
Shen J, Wong GL-H, Chan HL-Y, Chan RS-M, Chan H-Y, Chu WC-W, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46. https://doi.org/10.1111/jgh.12656 .
doi: 10.1111/jgh.12656 pubmed: 25040896
Krawczyk M, Stachowska E, Milkiewicz P, Lammert F, Milkiewicz M. Reduction of caloric intake might override the prosteatotic effects of the PNPLA3 p.I148M and TM6SF2 p.E167K variants in patients with fatty liver: Ultrasound-based prospective study. Digestion. 2016;93:139–48. https://doi.org/10.1159/000441185 .
doi: 10.1159/000441185 pubmed: 26745555
Davis JN, Lê K-A, Walker RW, Vikman S, Spruijt-Metz D, Weigensberg MJ, et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am J Clin Nutr. 2010;92:1522–7. https://doi.org/10.3945/ajcn.2010.30185 .
doi: 10.3945/ajcn.2010.30185 pubmed: 20962157 pmcid: 2980971
Santoro N, Savoye M, Kim G, Marotto K, Shaw MM, Pierpont B, et al. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake. PLoS One. 2012;7:e37827. https://doi.org/10.1371/journal.pone.0037827 .
doi: 10.1371/journal.pone.0037827 pubmed: 22629460 pmcid: 3357343
Sevastianova K, Kotronen A, Gastaldelli A, Perttilä J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss–induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94:104–11. https://doi.org/10.3945/ajcn.111.012369 .
doi: 10.3945/ajcn.111.012369 pubmed: 21525193
Kaliora AC, Kalafati IP, Gioxari A, Diolintzi A, Kokkinos A, Dedoussis GV. A modified response of NAFLD patients with non-significant fibrosis in nutritional counseling according to GCKR rs1260326. Eur J Nutr. 2018;57:2227–35. https://doi.org/10.1007/s00394-017-1499-7 .
doi: 10.1007/s00394-017-1499-7 pubmed: 28695325
Basu RS. PNPLA3-I148M: a problem of plenty in non-alcoholic fatty liver disease. Adipocyte. 2019;8:201–8. https://doi.org/10.1080/21623945.2019.1607423 .
doi: 10.1080/21623945.2019.1607423
Francque SM, van der Graaff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J Hepatol. 2016;65:425–43. https://doi.org/10.1016/j.jhep.2016.04.005 .
doi: 10.1016/j.jhep.2016.04.005 pubmed: 27091791

Auteurs

Sven M Francque (SM)

Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium. sven.francque@uza.be.
InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium. sven.francque@uza.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH