Postural adjustments to self-triggered perturbations under conditions of changes in body orientation.
Anticipatory postural adjustments
Coactivation
Compensatory postural adjustments
Postural control
Reciprocal activation
Referent coordinate
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
02
03
2023
accepted:
10
07
2023
medline:
31
7
2023
pubmed:
22
7
2023
entrez:
21
7
2023
Statut:
ppublish
Résumé
We studied anticipatory and compensatory postural adjustments (APAs and CPAs) associated with self-triggered postural perturbations in conditions with changes in the initial body orientation. In particular, we were testing hypotheses on adjustments in the reciprocal and coactivation commands, role of proximal vs. distal muscles, and correlations between changes in indices of APAs and CPAs. Healthy young participants stood on a board with full support or reduced support area and held a standard load in the extended arms. They released the load in a self-paced manned with a standard small-amplitude arm movement. Electromyograms of 12 muscles were recorded and used to compute reciprocal and coactivation indices between three muscle pairs on both sides of the body. The subject's body was oriented toward one of three targets: straight ahead, 60° to the left, and 60° to the right. Body orientation has stronger effects on proximal muscle pairs compared to distal muscles. It led to more consistent changes in the reciprocal command compared to the coactivation command. Indices of APAs and CPAs showed positive correlations across conditions. We conclude that the earlier suggested hierarchical relations between the reciprocal and coactivation command could be task-specific. Predominance of negative or positive correlations between APA and CPA indices could also be task-specific.
Identifiants
pubmed: 37479771
doi: 10.1007/s00221-023-06671-0
pii: 10.1007/s00221-023-06671-0
pmc: PMC10386932
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2163-2177Informations de copyright
© 2023. The Author(s).
Références
Exp Brain Res. 2000 Nov;135(1):81-93
pubmed: 11104130
J Neurophysiol. 1994 Aug;72(2):479-93
pubmed: 7983513
J Physiol. 2012 May 15;590(10):2189-99
pubmed: 22411012
Motor Control. 2000 Apr;4(2):185-200
pubmed: 11500575
Exp Brain Res. 2020 Oct;238(10):2207-2219
pubmed: 32696073
Motor Control. 2010 Jul;14(3):294-322
pubmed: 20702893
J Neurophysiol. 1986 Jun;55(6):1369-81
pubmed: 3734861
Neuroscience. 2013 Feb 12;231:61-9
pubmed: 23211560
J Neurophysiol. 2018 Dec 1;120(6):3026-3041
pubmed: 30207862
Exp Brain Res. 2019 May;237(5):1361-1374
pubmed: 30877340
Exp Brain Res. 2017 Mar;235(3):713-730
pubmed: 27866261
Electroencephalogr Clin Neurophysiol. 1998 Aug;109(4):350-9
pubmed: 9751298
Neurosci Lett. 1993 Sep 3;159(1-2):115-8
pubmed: 8264950
J Neurophysiol. 1982 Feb;47(2):287-302
pubmed: 7062101
J Electromyogr Kinesiol. 2018 Feb;38:168-174
pubmed: 29328985
Neuroscience. 2010 Nov 24;171(1):205-13
pubmed: 20804822
J Mot Behav. 1986 Mar;18(1):17-54
pubmed: 15136283
PLoS One. 2017 Oct 17;12(10):e0186369
pubmed: 29040298
Exp Brain Res. 2001 Jun;138(4):458-66
pubmed: 11465744
Exp Brain Res. 2008 Aug;189(2):171-87
pubmed: 18521583
J Electromyogr Kinesiol. 2015 Dec;25(6):966-72
pubmed: 26403099
J Electromyogr Kinesiol. 2010 Jun;20(3):388-97
pubmed: 19660966
J Neurophysiol. 1988 Jun;59(6):1888-905
pubmed: 3404210
Curr Opin Neurobiol. 2007 Dec;17(6):622-8
pubmed: 18304801
J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
pubmed: 11018445
J Physiol. 2005 Jun 1;565(Pt 2):675-84
pubmed: 15790661
PLoS One. 2013 Nov 20;8(11):e81053
pubmed: 24278374
Motor Control. 2023 May 24;:1-18
pubmed: 37225175
Exp Brain Res. 2023 May;241(5):1353-1365
pubmed: 37010540
Brain Res. 1997 May 16;757(1):43-59
pubmed: 9200498
Neurosci Lett. 1992 Nov 23;147(1):1-4
pubmed: 1480314
Biofizika. 1967 Jan-Feb;12(1):135-41
pubmed: 5623488
Exp Brain Res. 2008 Jan;184(3):323-38
pubmed: 17724582
Neuroscience. 2022 May 10;490:25-35
pubmed: 35276303
Behav Brain Res. 2011 Oct 10;224(1):145-54
pubmed: 21672559
J Physiol. 2010 May 1;588(Pt 9):1551-70
pubmed: 20231141
Brain Res. 2002 Jan 11;924(2):184-97
pubmed: 11750904
Adv Neurol. 1987;45:371-4
pubmed: 3825713
Exp Brain Res. 2021 Oct;239(10):2951-2967
pubmed: 34383080
Exp Brain Res. 1995;106(2):291-300
pubmed: 8566194
Neuroscientist. 2006 Aug;12(4):339-48
pubmed: 16840710
PLoS One. 2021 Apr 7;16(4):e0249635
pubmed: 33826672
Exp Brain Res. 2020 Oct;238(10):2359-2372
pubmed: 32766959
J Electromyogr Kinesiol. 1998 Dec;8(6):383-90
pubmed: 9840893
Exp Brain Res. 2011 Jul;212(1):47-63
pubmed: 21537967
Neuroscience. 2021 May 21;463:14-29
pubmed: 33774125
Neuroscience. 2022 Sep 15;500:79-94
pubmed: 35952997
Motor Control. 2021 Dec 10;26(1):97-143
pubmed: 34891127
Exp Brain Res. 2008 May;187(2):237-53
pubmed: 18278488
Brain Res. 2004 Jul 23;1015(1-2):57-72
pubmed: 15223367
Exp Brain Res. 2022 Jan;240(1):321-340
pubmed: 34725732
Exp Brain Res. 2011 Jul;212(3):385-97
pubmed: 21643717
Prog Neurobiol. 1992;38(1):35-56
pubmed: 1736324