Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA.
Luteolin/ZnO NPs
blood brain-barrier
diabetes
miR-124
Journal
Environmental toxicology
ISSN: 1522-7278
Titre abrégé: Environ Toxicol
Pays: United States
ID NLM: 100885357
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
revised:
18
06
2023
received:
03
10
2022
accepted:
06
07
2023
medline:
11
10
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
ppublish
Résumé
The most prevalent brain-specific microRNA, MicroRNA-124, exhibits anti-inflammatory properties. Luteolin nano-formulation with Zn oxide in the form of L/ZnO NPs may boost anti-diabetic properties; however, its beneficial effect on miRNAs is yet unknown in diabetes. The effectiveness of L/ZnONPs supplements in preventing diabetic neurodegeneration by modulating inflammatory responses in a diabetic model was investigated. A diabetic rat model was induced by a high-fat diet and streptozotocin (30 mg/kg I.P.). Plasma glucose, insulin, and HOMR-IR levels, as well as cytokines, lipid peroxidation, GSH/GSSG, and glucose transporter 1, were determined along with the tight junction proteins occludin (OCLN) and zona occludens 1 (ZO-1). Moreover, the expressions of brain CCAAT/enhancer-binding protein (C/EBPA mRNA), miR-124, glial fibrillary acidic protein (GFAP), and NF-kBp65 were measured alongside the histological investigation. The results revealed that L/ZnO NPs were able to diminish lipid peroxidation, increase the activity of antioxidant enzymes, and reduce inflammation under oxidative stress. Consequently, it was able to reduce hyperglycemia, elevate insulin levels, and improve insulin resistance. Besides, L/ZnO NPs upregulate miR-124, reduce C/EBPA mRNA, increase BCl-2, and inhibit apoptosis. The results indicate that diabetes raises BBB permeability via tight junction protein decline, which is restored following L/ZnO NPs treatment. Luteolin/ZnO NPs regulate miR-124 and microglia polarization by targeting C/EBPA and are expected to alleviate inflammatory injury via modulation of the redox-sensitive signal transduction pathways. Luteolin/ZnO NPs have a novel target for the protection of the BBB and the prevention of neurological complications in diabetes.
Substances chimiques
Insulins
0
Luteolin
KUX1ZNC9J2
MicroRNAs
0
MIRN124 microRNA, rat
0
RNA, Messenger
0
Tight Junction Proteins
0
Zinc Oxide
SOI2LOH54Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2691-2704Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Fiore V, De Rosa A, Falasca P, et al. Focus on the correlations between Alzheimer's disease and type 2 diabetes. Endocr Metab Immune Disord Drug Targets. 2019;19:571-579.
Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8:535-545.
Campos-Pena V, Toral-Rios D, Becerril-Perez F, et al. Metabolic syndrome as a risk factor for Alzheimer's disease: is abeta a crucial factor in both pathologies? Antioxid Redox Signal. 2017;26:542-560.
Cholerton B, Baker LD, Montine TJ, Craft S. Type 2 diabetes, cognition, and dementia in older adults: toward a precision health approach. Diabetes Spectr. 2016;29(4):210-219.
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cell. 2020;9(7):1698. doi:10.3390/cells9071698
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA alteration, application as biomarkers, and therapeutic approaches in neurodegenerative diseases. Int J Mol Sci. 2022;23(9):4718. doi:10.3390/ijms23094718
Xu W, Zhang H, Zhang Q, Xu J. β-Amyrin ameliorates diabetic nephropathy in mice and regulates the miR-181b-5p/HMGB2 axis in high glucose-stimulated HK-2 cells. Environ Toxicol. 2022 Mar;37(3):637-649. doi:10.1002/tox.23431
Labandeira CM, Fraga-Bau A, Arias Ron D, et al. Parkinson's disease and diabetes mellitus: common mechanisms and treatment repurposing. Neural Regen Res. 2022;17(8):1652-1658.
Self-Fordham JB, Naqvi AR, Uttamani JR, Kulkarni V, Nares S. MicroRNA: dynamic regulators of macrophage polarization and plasticity. Front Immunol. 2017;8:1062. doi:10.3389/fimmu.2017.01062
Guo Y, Hong W, Wang X, et al. MicroRNAs in microglia: How do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci. 2019;12:125.
An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer's disease by regulating BACE1. Oncotarget. 2018;8(69):114065-114071.
Sun M, Hou X, Ren G, Zhang Y, Cheng H. Dynamic changes in miR-124 levels in patients with acute cerebral infarction. Int J Neurosci. 2019;129(7):649-653.
Zhao J, He Z, Wang J. MicroRNA-124: a key player in microglia-mediated inflammation in neurological diseases. Front Cell Neurosci. 2021;15:771898.
Cao Z, Umek RM. McKnight SL regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991;5(9):1538-1552.
Kazkayasi I, Burul-Bozkurt N, Önder S, Kelicen-Ugur P, Pekiner C. Effects of experimental diabetes on C/EBP proteins in rat hippocampus, sciatic nerve and ganglia. Cell Mol Neurobiol. 2013;33(4):559-567. doi:10.1007/s10571-013-9924-9
Mohamed AA, Khater SI, Hamed Arisha A, Metwally MMM, Mostafa-Hedeab G, El-Shetry ES. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene. 2021;5(768):145288. doi:10.1016/j.gene.2020.145288
Khater SI, Dowidar MF, Abdel-Aziz AE, et al. β-Cell autophagy pathway and endoplasmic reticulum stress regulating-role of liposomal curcumin in experimental diabetes mellitus: a molecular and morphometric study. Antioxidants. 2022 Dec 2;11(12):2400. doi:10.3390/antiox11122400
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050-1074.
Dahran N, Abd-Elhakim YM, Mohamed AA, et al. Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol. 2023 Jan;171:113537. doi:10.1016/j.fct.2022.113537
Li B, Cui W, Tan Y, et al. Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. J Cell Mol Med. 2014;18(5):895-906.
Jansen J, Karges W, Rink L. Zinc and diabetes - clinical links and molecular mechanisms. J Nutr Biochem. 2009;20(6):399-417.
Rezai-Zadeh K, Ehrhart J, Bai Y, et al. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation. 2008;5:41.
Tian C, Xin Liu Y, Chang RW, Lv T-M, Cui C, Liu M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African J Botany. 2021;137:257-264.
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634-646.
Inagaki S, Ghirlando R, Grisshammer R. Biophysical characterization of membrane proteins in nanodiscs. Methods. 2013;59:287-300.
Bass KF, Gunzel P, Henchler D. LD50 versus acute toxicity. Arch Toxicol. 1982;51:183-186.
Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation inmaternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. Am J Obstet Gynecol. 1979;135:372-376.
Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
Srivastava SK, Beutler E. Accurate measurement of oxidized glutathione content of human, rabbit and rat red blood cells and tissues. Anal Biochem. 1967;25:70-76.
Roza NAV, Possignolo LF, Palanch AC. Gontijo JAR effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats. Food Nutr Res. 2016;60:28536.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods. 2001;25(4):402-408.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72:248-254.
Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 7th ed. Elsevier; 2013:252.
Takahashi S, Sun XZ, Kubota Y, et al. Histological and elemental changes in the rat brain after local irradiation with carbon ion beams. J Radiat Res. 2002;43:143-152.
Lanje AS, Sharma SJ, Ningthoujam RS, Ahn JS, Ramchandra B. Pode low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powd Technol. 2013;24:331-335.
Lim WQ, Michelle Luk KH, Lee KY, et al. Small extracellular Vesicles' miRNAs: biomarkers and therapeutics for neurodegenerative diseases. Pharmaceutics. 2023;15(4):1216.
Siddiqui SA, Or Rashid MM, Uddin MG, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: a preliminary study conducted in mice. Biosci Rep. 2020;40(4): BSR20193972.
Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest. 1995;96(2):1159-1163.
Elassy N, El-Dafrawy S, Abd El-Azim AO, El-Khawaga OAY, Negm A. Zinc oxide nanoparticles augment CD4, CD8, and GLUT-4 expression and restrict inflammation response in streptozotocin-induced diabetic rats. IET Nanobiotechnol. 2020;14(8):680-687.
Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11:508-524.
Balbaa M, Abdulmalek SA, Khalil S. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: role of Nigella sativa oil and antidiabetic drugs. PloS One. 2017;12(5):e0172429.
Zitka O, Skalickova S, Gumulec J, et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4(6):1247-1253.
Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci Biotechnol Biochem. 2016;80(8):1580-1586.
Alhujaily M, Albukhaty S, Yusuf M, et al. Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering. 2022;9(10):541.
Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants. 2019;8(6):164. doi:10.3390/antiox8060164
Bogush M, Heldt NA, Persidsky Y. Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J Neuroimmune Pharmacol. 2017;12(4):593-601.
Shao Y, Wolf PG, Guo S, Guo Y, Gaskins HR, Zhang B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem. 2017;43:18-26.
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543-1562.
Oosuka S, Kida T, Oku H, et al. Effects of an aquaporin 4 inhibitor, TGN-020, on murine diabetic retina. Int J Mol Sci. 2020;21(7):2324.
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats. Peer J. 2019;7:e7460.
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis. 2015;84:4-21.
Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med. 2018;22(10):4840-4855.
Li CC, Ramesh S, Liu TY, et al. Overexpression of cardiac-specific IGF-IIRα accelerates the development of liver dysfunction through STZ-induced diabetic hepatocyte damage in transgenic rats. Environ Toxicol. 2022;37(11):2804-2812.
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649-665.
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med. 2011;17(1):64-70.
Lu CH, Ou HC, Day CH, et al. Deep sea minerals ameliorate diabetic-induced inflammation via inhibition of TNFα signaling pathways. Environ Toxicol. 2020;35(4):468-477.
Sun Y, Qin Z, Li Q, et al. (2016) MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability. Acta Pharmacol Sin. 2016;37(7):889-897.
Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TV, Kim KJ, Shin HM. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B. 2015;146:10-17.
Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med. 2016;7:57.
Duan J, He L, Deng W, et al. Natural swietenine attenuates diabetic nephropathy by regulating the NF-κB/NLRP3/Caspase-1 signaling pathways: In vivo and in vitro study. Environ Toxicol. 2022;37(12):2977-2989.
Naseri R, Farzaei F, Fakhri S, et al. Polyphenols for diabetes associated neuropathy: pharmacological targets and clinical perspective. Daru. 2019;27(2):781-798.
Daily JW, Kang S, Park S. Protection against Alzheimer's disease by luteolin: role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors. 2021 Mar;47(2):218-231.
Ren G, Kong J, Jia N, Shang X. Luteolin attenuates neuronal apoptosis in the hippocampi of diabetic encephalopathy rats. Neural Regen Res. 2013;8(12):1071-1080.
Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363-376.