Modification of surface glycan by expression of beta-1,4-N-acetyl-galactosaminyltransferase (B4GALNT2) confers resistance to multiple viruses infection in chicken fibroblast cell.
B4GALNT2
Newcastle disease virus
chicken
genome editing
influenza A virus
Journal
Frontiers in veterinary science
ISSN: 2297-1769
Titre abrégé: Front Vet Sci
Pays: Switzerland
ID NLM: 101666658
Informations de publication
Date de publication:
2023
2023
Historique:
received:
07
02
2023
accepted:
19
06
2023
medline:
24
7
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
epublish
Résumé
Infectious viruses in poultry, such as avian influenza virus (AIV) and Newcastle disease virus (NDV), are one of the most major threats to the poultry industry, resulting in enormous economic losses. AIVs and NDVs preferentially recognize α-2,3-linked sialic acid to bind to target cells. The human beta-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2) modifies α-2,3-linked sialic acid-containing glycan by transferring N-acetylgalactosamine to the sub-terminal galactose of the glycan, thus playing a pivotal role in preventing viruses from binding to cell surfaces. However, chickens lack a homolog of the Here, we precisely tagged the human We validated human B4GALNT2 successfully modified α-2,3-linked sialic acid-containing glycan in chicken DF-1 cells. Following viral infection, we showed that human B4GALNT2 reduced infection of two AIV subtypes and NDV at 12-, 24-, and 36-hours post-infection. Moreover, cells expressing human Collectively, these results suggest that artificially expressing human
Identifiants
pubmed: 37483287
doi: 10.3389/fvets.2023.1160600
pmc: PMC10358734
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1160600Informations de copyright
Copyright © 2023 Park, Woo, Song and Han.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Trop Anim Health Prod. 2014 Jan;46(1):271-7
pubmed: 24061688
Virology. 1983 Jun;127(2):361-73
pubmed: 6868370
Genome Biol. 2018 Nov 26;19(1):204
pubmed: 30477539
Glycobiology. 2018 May 1;28(5):261-268
pubmed: 29506202
Science. 2006 Apr 21;312(5772):399
pubmed: 16556800
EMBO Rep. 2004 Jul;5(7):728-33
pubmed: 15192698
BMC Immunol. 2020 Jan 31;21(1):4
pubmed: 32005148
Nature. 2006 Mar 23;440(7083):435-6
pubmed: 16554799
J Clin Microbiol. 2013 Jul;51(7):2250-60
pubmed: 23658271
Front Immunol. 2018 Jul 30;9:1586
pubmed: 30105014
Emerg Microbes Infect. 2019;8(1):1428-1437
pubmed: 31560252
J Gen Virol. 2006 May;87(Pt 5):1209-1216
pubmed: 16603523
Glycoconj J. 2012 Oct;29(7):539-49
pubmed: 22869099
Vet Res. 2017 Oct 26;48(1):68
pubmed: 29073919
J Gene Med. 2004 Apr;6(4):395-404
pubmed: 15079814
Theriogenology. 2010 Sep 15;74(5):805-16.e1
pubmed: 20570335
Poult Sci. 2018 Oct 1;97(10):3421-3428
pubmed: 29924353
Theriogenology. 2012 Sep 1;78(4):793-802
pubmed: 22541322
Carbohydr Res. 1986 Aug 15;151:65-76
pubmed: 3094940
Virology. 1994 Nov 15;205(1):17-23
pubmed: 7975212
Front Immunol. 2020 Apr 30;11:678
pubmed: 32425931
Nat Rev Immunol. 2007 Apr;7(4):267-78
pubmed: 17363960
Nucleic Acids Res. 1991 Nov 25;19(22):6205-8
pubmed: 1956779
Vet Microbiol. 2012 Jan 27;154(3-4):209-21
pubmed: 21925809
J Infect Dis. 2020 Jan 1;221(1):71-80
pubmed: 31581291
Viruses. 2018 Oct 15;10(10):
pubmed: 30326625
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9290-5
pubmed: 18579772
Biochem J. 1983 Dec 1;215(3):483-9
pubmed: 6229247
Virus Res. 2014 May 12;184:71-81
pubmed: 24589707
PLoS Comput Biol. 2013;9(11):e1003372
pubmed: 24278009
FASEB J. 2016 Feb;30(2):555-63
pubmed: 26443821
Eur J Toxicol Environ Hyg. 1974 Mar-Apr;7(2):77-84
pubmed: 4408718
Cell Rep. 2017 Aug 15;20(7):1503-1512
pubmed: 28813663