Advanced materials for implantable neuroelectronics.
Journal
MRS bulletin
ISSN: 0883-7694
Titre abrégé: MRS Bull
Pays: England
ID NLM: 100971398
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
medline:
24
7
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
ppublish
Résumé
Materials innovation has arguably played one of the most important roles in the development of implantable neuroelectronics. Such technologies explore biocompatible working systems for reading, triggering, and manipulating neural signals for neuroscience research and provide the additional potential to develop devices for medical diagnostics and/or treatment. The past decade has witnessed a golden era in neuroelectronic materials research. For example, R&D on soft material-based devices have exploded and taken center stage for many applications, including both central and peripheral nerve interfaces. Recent developments have also witnessed the emergence of biodegradable and multifunctional devices. In this article, we aim to overview recent advances in implantable neuroelectronics with an emphasis on chronic biocompatibility, biodegradability, and multifunctionality. In addition to highlighting fundamental materials innovations, we also discuss important challenges and future opportunities.
Identifiants
pubmed: 37485070
doi: 10.1557/s43577-023-00540-5
pmc: PMC10361212
mid: NIHMS1912314
doi:
Types de publication
Journal Article
Langues
eng
Pagination
475-483Subventions
Organisme : NEI NIH HHS
ID : R21 EY030710
Pays : United States
Organisme : NINDS NIH HHS
ID : RF1 NS118301
Pays : United States
Organisme : NINDS NIH HHS
ID : U01 NS123668
Pays : United States
Déclaration de conflit d'intérêts
Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.
Références
Microsyst Nanoeng. 2018 Sep 24;4:30
pubmed: 31057918
Nature. 2017 Nov 8;551(7679):232-236
pubmed: 29120427
Adv Sci (Weinh). 2022 Jun;9(18):e2105414
pubmed: 35451232
Lab Chip. 2020 Apr 21;20(8):1390-1397
pubmed: 32211718
J Neurophysiol. 2020 Dec 1;124(6):1578-1587
pubmed: 32965150
Sci Adv. 2019 Jul 05;5(7):eaaw5296
pubmed: 31281895
Biomaterials. 2013 Nov;34(33):8061-74
pubmed: 23891081
MRS Bull. 2023 May;48(5):531-546
pubmed: 37476355
Nat Med. 2018 Dec;24(12):1830-1836
pubmed: 30297910
Cell. 2020 Apr 2;181(1):115-135
pubmed: 32220309
Sci Adv. 2018 Sep 05;4(9):eaat0626
pubmed: 30191176
Nat Biotechnol. 2015 Mar;33(3):277-84
pubmed: 25599177
Nat Commun. 2020 Apr 28;11(1):2063
pubmed: 32345971
Biomaterials. 2018 Feb;154:1-11
pubmed: 29117574
J Neurosci Methods. 2011 Jun 15;198(2):158-71
pubmed: 21470563
MRS Bull. 2023 May;48(5):475-483
pubmed: 37485070
Sci Adv. 2020 Dec 11;6(50):
pubmed: 33310851
Nat Commun. 2019 Aug 22;10(1):3777
pubmed: 31439845
Nat Mater. 2016 Jul;15(7):782-791
pubmed: 27088236
Nat Neurosci. 2017 Apr;20(4):612-619
pubmed: 28218915
Adv Mater. 2022 Nov;34(45):e2201864
pubmed: 35925610
Adv Mater. 2022 Aug;34(34):e2201129
pubmed: 35353928
Microsyst Nanoeng. 2023 Jan 4;9:4
pubmed: 36620392
Science. 2015 Jan 9;347(6218):159-63
pubmed: 25574019
Nat Nanotechnol. 2021 Sep;16(9):1019-1029
pubmed: 34140673
Nat Mater. 2020 Jun;19(6):590-603
pubmed: 32461684
J Neural Eng. 2020 Apr 29;17(2):026037
pubmed: 32209743
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21427-21437
pubmed: 31601737
Lab Chip. 2015;15(18):3730-7
pubmed: 26235309
Nat Biomed Eng. 2023 Apr;7(4):520-532
pubmed: 36192597
Lab Chip. 2015 Mar 21;15(6):1590-7
pubmed: 25651943
Cell. 2015 Jul 30;162(3):662-74
pubmed: 26189679