Topochemical Syntheses of Polyarylopeptides Involving Large Molecular Motions: Frustrated Monomer Packing Leads to the Formation of Polymer Blends.
Arylopeptide
Click Chemistry
Peptidomimetic
Polymerization
Topochemical Reaction
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
11 Sep 2023
11 Sep 2023
Historique:
received:
09
05
2023
medline:
24
7
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
ppublish
Résumé
We report the topochemical syntheses of three polyarylopeptides, wherein triazolylphenyl group is integrated into the backbone of peptide chains. We synthesized three different monomers having azide and arylacetylene as end-groups from glycine, L-alanine and L-valine. We crystallized these monomers and the crystal structures of two of them were determined by single-crystal X-ray diffractometry. Due to the steric constraints, both of these monomers crystallized with two molecules, viz. conformers A and B, in the asymmetric unit. Consistently, in both cases, the A-conformers are antiparallelly π-stacked and B-conformers are parallelly slip-stacked, exploiting weak interactions. Though the arrangements of molecules in the pristine crystals were unsuitable for topochemical reaction, upon heating, they undergo large motion inside the crystal lattice to reach a transient reactive orientation and thereby the self-sorted conformer stacks react to give a blend of triazole-linked polyarylopeptides having two different linkages. Due to the large molecular motion inside crystals, the product phase loses its crystallinity.
Identifiants
pubmed: 37486334
doi: 10.1002/anie.202306504
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202306504Subventions
Organisme : Science and Engineering Research Board
ID : CRG568/2022
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug Discov. Today 2010, 15, 40-56;
I. Avan, C. D. Hall, A. R. Katritzky, Chem. Soc. Rev. 2014, 43, 3575-3594;
A. Levin, T. A. Hakala, L. Schnaider, G. J. L. Bernardes, E. Gazit, T. P. J. Knowles, Nat. Chem. Rev. 2020, 4, 615-634;
L. Wang, N. Wang, W. Zhang, X. Cheng, Z. Yan, G. Shao, X. Wang, R. Wang, C. Fu, Signal Transduct. Targeted Ther. 2022, 7, 48;
N. H. C. S. Silva, C. Vilela, I. M. Marrucho, C. S. R. Freire, C. Pascoal Neto, A. J. D. Silvestre, J. Mater. Chem. B 2014, 2, 3715-3740.
J.-E. Potaufeux, J. Odent, D. Notta-Cuvier, F. Lauro, J.-M. Raquez, Polym. Chem. 2020, 11, 5914-5936;
K. Namsheer, C. S. Rout, RSC Adv. 2021, 11, 5659-5697;
R. Brighenti, Y. Li, F. J. Vernerey, Front. Mater. 2020, 7, 196;
H. Mahmoodi Khaha, O. Soleimani, J. Chem. Rev. 2023, 5, 204-220.
I. Huc, Eur. J. Org. Chem. 2004, 17-29;
D.-W. Zhang, H. Wang, Z.-T. Li, Encyclopedia of Polymer Science and Technology, Wiley-VCH, Weinheim, 4th ed 2017, pp. 1-41;
D.-W. Zhang, X. Zhao, J.-L. Hou, Z.-T. Li, Chem. Rev. 2012, 112, 5271-5316;
Z.-D. Yu, Y. Lu, J.-Y. Wang, J. Pei, Chem. Eur. J. 2020, 26, 16194-16205.
Y. Ishido, N. Kanbayashi, T. Okamura, K. Onitsuka, Macromolecules 2017, 50, 5301-5307;
Y. Ishido, N. Kanbayashi, T. Okamura, K. Onitsuka, ACS Macro Lett. 2019, 8, 694-699;
Y. Ishido, N. Kanbayashi, N. Fujii, T. Okamura, T. Haino, K. Onitsuka, Chem. Commun. 2020, 56, 2767-2770;
Y. Ishido, N. Kanbayashi, T. Okamura, K. Onitsuka, Macromol. Rapid Commun. 2021, 42, 2100250.
K. Biradha, R. Santra, Chem. Soc. Rev. 2013, 42, 950-967;
K. Hema, A. Ravi, C. Raju, J. R. Pathan, R. Rai, K. M. Sureshan, Chem. Soc. Rev. 2021, 50, 4062-4099.
K. Hema, K. M. Sureshan, Acc. Chem. Res. 2019, 52, 3149-3163;
V. Athiyarath, K. M. Sureshan, Angew. Chem. Int. Ed. 2020, 59, 15580-15585;
K. Hema, K. M. Sureshan, Angew. Chem. Int. Ed. 2020, 59, 8854-8859;
V. Athiyarath, M. C. Madhusudhanan, S. Kunnikuruvan, K. M. Sureshan, Angew. Chem. Int. Ed. 2022, 61, e202113129;
R. Rai, K. M. Sureshan, Angew. Chem. Int. Ed. 2021, 61, e202111623.
Deposition numbers 2084121 (for monomer 1) and 2260000 (for monomer 2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
M. C. Madhusudhanan, H. Balan, D. B. Werz, K. M. Sureshan, Angew. Chem. Int. Ed. 2021, 60, 22797-22803.
K. M. Steed, J. W. Steed, Chem. Rev. 2015, 115, 2895-2933.
S. Maity, G. N. Patwari, R. Sedlak, P. Hobza, Phys. Chem. Chem. Phys. 2011, 13, 16706-16712.
M. J. Turner, J. J. McKinnon, D. Jayatilaka, M. A. Spackman, CrystEngComm 2011, 13, 1804-1813.
F. Hu, S. Wang, B. F. Abrahams, J. Lang, CrystEngComm 2015, 17, 4903-4911;
R. Mandal, M. Garai, K. Biradha, Cryst. Growth Des. 2017, 17, 5061-5064;
J. Quentin, L. R. MacGillivray, ChemPhysChem 2020, 21, 154-163;
A. Ravi, S. Z. Hassan, S. Bhandary, K. M. Sureshan, Angew. Chem. Int. Ed. 2022, 61, e202200954.
Z. Wang, Q. Zhang, H. Shen, P. Yang, X. Zhou, Front. Chem. 2021, 9, 698297.
J. Xiao, M. Yang, J. W. Lauher, F. W. Fowler, Angew. Chem. Int. Ed. 2000, 39, 2132-2135;
S. Nomura, T. Itoh, H. Nakasho, T. Uno, M. Kubo, K. Sada, K. Inoue, M. Miyata, J. Am. Chem. Soc. 2004, 126, 2035-2041;
Z. Wang, B. Kastern, K. Randazzo, A. Ugrinov, J. Butz, D. W. Seals, M. P. Sibi, Q. R. Chu, Green Chem. 2015, 17, 4720-4724;
Z. Wang, B. Miller, J. Butz, K. Randazzo, Z. D. Wang, Q. R. Chu, Angew. Chem. Int. Ed. 2017, 56, 12155-12159.
M. D. Cohen, Angew. Chem. Int. Ed. 1975, 14, 386-393;
A. Gavezzotti, M. Simonetta, Organic Solid State Chemistry (Ed.: G. R. Desiraju), Elsevier, Amsterdam 1987, pp. 391-432.
R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471-2474;
D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, Cambridge 2009.
G. M. Sheldrick, Acta Crystallogr. Sect. D 2008, 64, 112-122;
G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
A. Proteau-Gagné, K. Rochon, M. Roy, A. Pierre-Julien, B. Guérin, L. Gendron, Y. L. Dory, Bioorg. Med. Chem. Lett. 2013, 23, 5267-5269.
T. Shiraishi, T. Saito, H. Kagechika, T. Hirano, Tetrahedron Lett. 2014, 55, 6784-6786.
CPMD, version 13.3; IBM and MPI für Festkörperforschung, 1997-2001; see http://www.cpmd.org.
J. P. Perdew, K. Burke, Phys. Rev. Lett. 1996, 77, 3865-3868;
D. Vanderbilt, Phys. Rev. B 1990, 41, 7892-7895.
S. Nosé, J. Chem. Phys. 1984, 81, 511-519;
W. G. Hoover, Phys. Rev. A 1985, 31, 1695-1697.