Alterations in Physical Demands During Virtual/Augmented Reality-Based Tasks: A Systematic Review.
Assessment
Biomechanics
Ergonomics
Extended reality
Head-Mounted Display
Human–computer interaction
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
03
01
2023
accepted:
19
06
2023
medline:
9
8
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
ppublish
Résumé
The digital world has recently experienced a swift rise in worldwide popularity due to Virtual (VR) and Augmented Reality (AR) devices. However, concrete evidence about the effects of VR/AR devices on the physical workload imposed on the human body is lacking. We reviewed 27 articles that evaluated the physical impact of VR/AR-based tasks on the users using biomechanical sensing equipment and subjective tools. Findings revealed that movement and muscle demands (neck and shoulder) varied in seven and five studies while using VR, while in four and three studies during AR use, respectively, compared to traditional methods. User discomfort was also found in seven VR and three AR studies. Outcomes indicate that interface and interaction design, precisely target locations (gestures, viewing), design of virtual elements, and device type (location of CG as in Head-Mounted Displays) influence these alterations in neck and shoulder regions. Recommendations based on the review include developing comfortable reach envelopes for gestures, improving wearability, and studying temporal effects of repetitive movements (such as effects on fatigue and stability). Finally, a guideline is provided to assist researchers in conducting effective evaluations. The presented findings from this review could benefit designers/evaluations working towards developing more effective VR/AR products.
Identifiants
pubmed: 37486385
doi: 10.1007/s10439-023-03292-0
pii: 10.1007/s10439-023-03292-0
doi:
Types de publication
Systematic Review
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1910-1932Informations de copyright
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Références
Aromaa, S., A. Väätänen, E. Kaasinen, M. Uimonen, and S. Siltanen. Human factors and ergonomics evaluation of a tablet based augmented reality system in maintenance work. ACM Int. Conf. Proc. Ser. 2018, pp. 118–125. https://doi.org/10.1145/3275116.3275125 .
Astrologo, A. N. The effects of head-mounted displays (HMDS) and their inertias on cervical spine loading. (Doctoral dissertation, Northeastern University).
Ban, Y., T. Narumi, T. Fujii, S. Sakurai, J. Imura, T. Tanikawa, and M. Hirose. Augmented endurance: controlling fatigue while handling objects by affecting weight perception using augmented reality. Conf. Hum. Factors Comput. Syst. - Proc. 2013, pp. 69–77. https://doi.org/10.1145/2470654.2470665 .
Bani Hani, D., R. Huangfu, R. Sesek, M. C. Schall, G. A. Davis, and S. Gallagher. Development and validation of a cumulative exposure shoulder risk assessment tool based on fatigue failure theory. Ergonomics. 64:39–54, 2021.
pubmed: 32812850
doi: 10.1080/00140139.2020.1811399
Boston Consulting Group. Augmented and virtual reality. 2022. https://www.bcg.com/de-at/capabilities/digital-technology-data/emerging-technologies/augmented-virtual-reality .
Bovim, L. P., B. E. Gjesdal, S. Mæland, M. K. Aaslund, and B. Bogen. The impact of motor task and environmental constraints on gait patterns during treadmill walking in a fully immersive virtual environment. Gait Posture. 77:243–249, 2020.
pubmed: 32062404
doi: 10.1016/j.gaitpost.2020.01.031
Braly, A. M., B. Nuernberger, and S. Y. Kim. Augmented reality improves procedural work on an international space station science instrument. Hum. Factors. 61:866–878, 2019.
pubmed: 30694084
doi: 10.1177/0018720818824464
Cano Porras, D., H. Sharon, R. Inzelberg, Y. Ziv-Ner, G. Zeilig, and M. Plotnik. Advanced virtual reality-based rehabilitation of balance and gait in clinical practice. Ther. Adv. Chronic Dis. 10:1–16, 2019.
doi: 10.1177/2040622319868379
Chan, Z. Y. S., A. J. C. MacPhail, I. P. H. Au, J. H. Zhang, B. M. F. Lam, R. Ferber, and R. T. H. Cheung. Walking with head-mounted virtual and augmented reality devices: effects on position control and gait biomechanics. PLoS ONE. 14:1–14, 2019.
doi: 10.1371/journal.pone.0225972
Chang, J., B. Choi, A. Tjolleng, and K. Jung. Effects of button position on a soft keyboard: muscle activity, touch time, and discomfort in two-thumb text entry. Appl. Ergon. 60:282–292, 2017.
pubmed: 28166887
doi: 10.1016/j.apergo.2016.12.008
Chateauroux, E., and X. Wang. Effects of age, gender, and target location on seated reach capacity and posture. Hum. Factors. 50:211–226, 2008.
pubmed: 18516833
doi: 10.1518/001872008X250719
Chattha, U. A., U. I. Janjua, F. Anwar, T. M. Madni, M. F. Cheema, and S. I. Janjua. Motion sickness in virtual reality: an empirical evaluation. IEEE Access. 8:130486–130499, 2020.
doi: 10.1109/ACCESS.2020.3007076
Chen, K. B., K. Ponto, R. D. Tredinnick, and R. G. Radwin. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Hum. Factors. 57:658–673, 2015.
pubmed: 25977324
doi: 10.1177/0018720814562231
Chen, K., and K. B. Chen. Task-oriented and imitation-oriented movements in virtual reality exercise performance and design. Hum. Factors. 2021. https://doi.org/10.1177/00187208211010100 .
doi: 10.1177/00187208211010100
pubmed: 34969321
Chen, Y., X. Wang, and H. Xu. Human factors/ergonomics evaluation for virtual reality headsets: a review. CCF Trans. Pervasive Comput. Interact. 3:99–111, 2021.
doi: 10.1007/s42486-021-00062-6
Chihara, T., and A. Seo. Evaluation of physical workload affected by mass and center of mass of head-mounted display. Appl. Ergon. 68:204–212, 2018.
pubmed: 29409636
doi: 10.1016/j.apergo.2017.11.016
del Cid, D. A., D. Larranaga, M. Leitao, R. L. Mosher, S. R. Berzenski, V. Gandhi, and S. A. Drew. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey. Ergonomics. 64:69–77, 2021.
pubmed: 32921282
doi: 10.1080/00140139.2020.1820083
Cifrek, M., V. Medved, S. Tonković, and S. Ostojić. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24:327–340, 2009.
doi: 10.1016/j.clinbiomech.2009.01.010
Cutolo, F., A. Meola, M. Carbone, S. Sinceri, F. Cagnazzo, E. Denaro, N. Esposito, M. Ferrari, and V. Ferrari. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom. Comput. Assist. Surg. 22:39–53, 2017.
doi: 10.1080/24699322.2017.1358400
Dolan, P., and M. A. Adams. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine. J. Biomech. 31:713–721, 1998.
pubmed: 9796671
doi: 10.1016/S0021-9290(98)00086-4
Dube, T. J., and A. S. Arif. Text Entry in Virtual Reality: A Comprehensive Review of the Literature. Cham: Springer International Publishing, pp. 419–437, 2019.
Evans, E., K. E. Naugle, A. S. Kaleth, B. Arnold, and K. M. Naugle. Physical activity intensity, perceived exertion, and enjoyment during head-mounted display virtual reality games. Games Health J. 10:314–320, 2021.
pubmed: 34449262
Faber, G. S., C. C. Chang, I. Kingma, J. T. Dennerlein, and J. H. van Dieën. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 49:904–912, 2016.
pubmed: 26795123
doi: 10.1016/j.jbiomech.2015.11.042
Falcão, C. S., and M. M. Soares. Ergonomics, usability and virtual reality: a review applied to consumer product. Adv. Usability Eval. Part II 2012, pp. 297–306. https://doi.org/10.1201/b12324-35 .
Fasulo, L., A. Naddeo, and N. Cappetti. A study of classroom seat (dis)comfort: relationships between body movements, center of pressure on the seat, and lower limbs’ sensations. Appl. Ergon. 74:233–240, 2019.
pubmed: 30487104
doi: 10.1016/j.apergo.2018.08.021
Folgheraiter, M., M. Jordan, S. Straube, A. Seeland, S. K. Kim, and E. A. Kirchner. Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int. J. Soc. Robot. 4:285–302, 2012.
doi: 10.1007/s12369-012-0147-x
Ghasemi, Y., A. Singh, M. Kim, A. Johnson, and H. Jeong. Effects of head-locked augmented reality on user’s performance and perceived workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:1094–1098, 2021.
doi: 10.1177/1071181321651169
Harih, G., and B. Dolšak. Tool-handle design based on a digital human hand model. Int. J. Ind. Ergon. 43:288–295, 2013.
doi: 10.1016/j.ergon.2013.05.002
Hellig, T., L. Johnen, A. Mertens, V. Nitsch, and C. Brandl. Prediction model of the effect of postural interactions on muscular activity and perceived exertion. Ergonomics. 63:593–606, 2020.
pubmed: 32216547
doi: 10.1080/00140139.2020.1740333
Higgins, J. P. T., J. Savović, M. J. Page, R. G. Elbers, and J. A. C. Sterne. Assessing risk of bias in a randomized trial. In: Cochrane Handbook for Systematic Reviews of Interventions, edited by J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, and V. A. Welch. Hoboken: Wiley, 2019, pp. 205–228.
doi: 10.1002/9781119536604.ch8
Hilt, S., T. Meunier, C. Pontonnier, and G. Dumont. Biomechanical fidelity of simulated pick-and-place tasks: impact of visual and haptic renderings. IEEE Trans. Haptics. 14:692–698, 2021.
pubmed: 33460384
doi: 10.1109/TOH.2021.3052658
Hou, L., X. Wang, and M. Truijens. Using augmented reality to facilitate piping assembly: an experiment-based evaluation. J. Comput. Civ. Eng. 2015. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000344 .
doi: 10.1061/(ASCE)CP.1943-5487.0000344
Ito, K., M. Tada, H. Ujike, and K. Hyodo. Effects of the weight and balance of head-mounted displays on physical load. Appl. Sci. 11:6802, 2021.
doi: 10.3390/app11156802
Janeh, O., G. Bruder, F. Steinicke, A. Gulberti, and M. Poetter-Nerger. Analyses of gait parameters of younger and older adults during (non-)isometric virtual walking. IEEE Trans. Vis. Comput. Graph. 24:2663–2674, 2018.
pubmed: 29990158
doi: 10.1109/TVCG.2017.2771520
Janeh, O., E. Langbehn, F. Steinicke, G. Bruder, A. Gulberti, and M. Poetter-Nerger. Walking in virtual reality: effects of manipulated visual self-motion on walking biomechanics. ACM Trans. Appl. Percept. 14:1–15, 2017.
doi: 10.1145/3022731
Mahendra, K. C., G. H. Virupaksha, and A. T. Gouda. Ergonomic analysis of welding operator postures. Int. J. Mech. Prod. Eng. 4:9–22, 2016.
Kaplan, A. D., J. Cruit, M. Endsley, S. M. Beers, B. D. Sawyer, and P. A. Hancock. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Hum. Factors. 63:706–726, 2021.
pubmed: 32091937
doi: 10.1177/0018720820904229
Kavanagh, S., A. Luxton-Reilly, and B. Wuensche. A systematic review of virtual reality in education—The Open University. Themes Sci. Technol. Educ. 10:85–119, 2017.
Kia, K., J. Hwang, H. Ishak, J. Wilson, I.-S. Kim, and J. Kim. Different system error rates in augmented reality interface affected cognitive stress. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:1087–1088, 2021.
doi: 10.1177/1071181321651182
Kim, E., and G. Shin. Head rotation and muscle activity when conducting document editing tasks with a head-mounted display. Proc. Hum. Factors Ergon. Soc. 2:952–955, 2018.
Kim, E., and G. Shin. User discomfort while using a virtual reality headset as a personal viewing system for text-intensive office tasks. Ergonomics. 64:891–899, 2021.
pubmed: 33357004
doi: 10.1080/00140139.2020.1869320
Kim, H. K., J. Park, Y. Choi, and M. Choe. Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69:66–73, 2018.
pubmed: 29477332
doi: 10.1016/j.apergo.2017.12.016
Kim, J. H., H. Ari, C. Madasu, and J. Hwang. Evaluation of the biomechanical stress in the neck and shoulders during augmented reality interactions. Appl. Ergon.88:103175, 2020.
pubmed: 32678782
doi: 10.1016/j.apergo.2020.103175
Kim, S., M. A. Nussbaum, and J. L. Gabbard. Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Appl. Ergon. 74:186–193, 2019.
pubmed: 30487099
doi: 10.1016/j.apergo.2018.08.026
Kim, W., and S. Xiong. ViewfinderVR: configurable viewfinder for selection of distant objects in VR. Virtual Real. 2022. https://doi.org/10.1007/s10055-022-00649-z .
doi: 10.1007/s10055-022-00649-z
pubmed: 36567954
pmcid: 9761034
Knight, J. F., D. D. Williams, T. N. Arvanitis, B. Chris, A. Wichmann, M. Wittkaemper, I. Herbst, and S. Sotiriou. Wearability assessment of a mobile augmented reality system. Proc. 11th Int. Conf. Virtual Syst. Multimed. 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.8607&rep=rep1&type=pdf .
Kuber, P. M., M. Abdollahi, M. M. Alemi, and E. Rashedi. A systematic review on evaluation strategies for field assessment of upper-body industrial exoskeletons: current practices and future trends. Ann. Biomed. Eng. 50:1203–1231, 2022.
pubmed: 35916980
doi: 10.1007/s10439-022-03003-1
Kuber, P. M., and E. Rashedi. Product ergonomics in industrial exoskeletons: potential enhancements for workforce safety and efficiency. Theor. Issues Ergon. Sci. 22:729–752, 2020.
doi: 10.1080/1463922X.2020.1850905
Kuber, P. M., and E. Rashedi. Designing a new forklift backrest: role of adjustability in improving operator comfort. Ergon. Des. 2021. https://doi.org/10.1177/10648046211002378 .
doi: 10.1177/10648046211002378
Kuber, P. M., and E. Rashedi. Investigating effects of adjustability features in the design of forklift backrests: a pilot study. Int. J. Hum. Factors Ergon. 9:350, 2022.
doi: 10.1504/IJHFE.2022.127440
Le, P., and W. S. Marras. Evaluating the low back biomechanics of three different office workstations: seated, standing, and perching. Appl. Ergon. 56:170–178, 2016.
pubmed: 27184325
doi: 10.1016/j.apergo.2016.04.001
Lee, M., M. Billinghurst, W. Baek, R. Green, and W. Woo. A usability study of multimodal input in an augmented reality environment. Virtual Real. 17:293–305, 2013.
doi: 10.1007/s10055-013-0230-0
Lee, Y., D. Park, and Y. Min. The effect of wearing a head—mounted display on the boundaries of the cervical range of motion based on perceived comfort in a static posture. Virtual Real. 2022. https://doi.org/10.1007/s10055-022-00684-w .
doi: 10.1007/s10055-022-00684-w
pubmed: 36533192
pmcid: 9734863
Lim, A. K., J. Ryu, H. M. Yoon, H. C. Yang, and S. Ki Kim. Ergonomic effects of medical augmented reality glasses in video-assisted surgery. Surg. Endosc. 36:988–998, 2022.
pubmed: 33638103
doi: 10.1007/s00464-021-08363-8
Lim, S., B. J. Martin, and M. K. Chung. The effects of target location on temporal coordination of the upper body during 3D seated reaches considering the range of motion. Int. J. Ind. Ergon. 34:395–405, 2004.
doi: 10.1016/j.ergon.2004.05.002
Marklin, R. W., A. M. Toll, E. H. Bauman, J. J. Simmins, J. F. LaDisa, and R. Cooper. Do head-mounted augmented reality devices affect muscle activity and eye strain of utility workers who do procedural work? Studies of operators and manhole workers. Hum. Factors. 64:305–323, 2022.
pubmed: 32830567
doi: 10.1177/0018720820943710
Martelli, D., B. Xia, A. Prado, and S. K. Agrawal. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset. Gait Posture. 67:251–256, 2019.
pubmed: 30388606
doi: 10.1016/j.gaitpost.2018.10.029
Muñoz, A., X. Mahiques, J. E. Solanes, A. Martí, L. Gracia, and J. Tornero. Mixed reality-based user interface for quality control inspection of car body surfaces. J. Manuf. Syst. 53:75–92, 2019.
doi: 10.1016/j.jmsy.2019.08.004
Murray, M., B. Lange, S. S. Chreiteh, H. B. Olsen, B. R. Nørnberg, E. Boyle, K. Søgaard, and G. Sjøgaard. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight. J. Electromyogr. Kinesiol. 27:10–17, 2016.
pubmed: 26852114
doi: 10.1016/j.jelekin.2015.12.009
Nichols, S. Physical ergonomics of virtual environment use. Appl. Ergon. 30:79–90, 1999.
pubmed: 10098819
doi: 10.1016/S0003-6870(98)00045-3
Oh, K., C. J. Stanley, D. L. Damiano, J. Kim, J. Yoon, and H. S. Park. Biomechanical evaluation of virtual reality-based turning on a self-paced linear treadmill. Gait Posture. 65:157–162, 2018.
pubmed: 30510358
pmcid: 6191847
doi: 10.1016/j.gaitpost.2018.07.175
Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:2021, 2020.
Penumudi, S. A., V. A. Kuppam, J. H. Kim, and J. Hwang. The effects of target location on musculoskeletal load, task performance, and subjective discomfort during virtual reality interactions. Appl. Ergon.84:103010, 2020.
pubmed: 31785450
doi: 10.1016/j.apergo.2019.103010
Rampichini, S., T. M. Vieira, P. Castiglioni, and G. Merati. Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review. Entropy. 22:529, 2020.
pubmed: 33286301
pmcid: 7517022
doi: 10.3390/e22050529
Rubio-Tamayo, J. L., M. G. Barrio, and F. G. García. Immersive environments and virtual reality: systematic review and advances in communication, interaction and simulation. Multimodal Technol. Interact. 1:1–20, 2017.
Samani, A., C. Pontonnier, G. Dumont, and P. Madeleine. Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments. PLoS ONE. 10:1–18, 2015.
doi: 10.1371/journal.pone.0116211
Schmid, A. B., P. A. Kubler, V. Johnston, and M. W. Coppieters. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome. Appl. Ergon. 47:151–156, 2015.
pubmed: 25479984
doi: 10.1016/j.apergo.2014.08.020
Souchet, A. D., D. Lourdeaux, A. Pagani, and L. Rebenitsch. A Narrative Review of Immersive Virtual Reality’s Ergonomics and Risks at the Workplace: Cybersickness, Visual Fatigue, Muscular Fatigue, Acute Stress, And Mental Overload. London: Springer, 2022. https://doi.org/10.1007/s10055-022-00672-0 .
doi: 10.1007/s10055-022-00672-0
Srinivasan, M., S. T. Mubarrat, Q. Humphrey, T. Chen, K. Binkley, and S. K. Chowdhury. The biomechanical evaluation of a human–robot collaborative task in a physically interactive virtual reality simulation testbed. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65:403–407, 2021.
doi: 10.1177/1071181321651267
Sun, X., R. Houssin, J. Renaud, and M. Gardoni. A review of methodologies for integrating human factors and ergonomics in engineering design. Int. J. Prod. Res. 2019. https://doi.org/10.1080/00207543.2018.1492161 .
doi: 10.1080/00207543.2018.1492161
Sun, Y., G. Kar, A. Stevenson Won, and A. Hedge. Postural risks and user experience of 3D interface designs for virtual reality-based learning environments. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 63:2313–2317, 2019.
doi: 10.1177/1071181319631023
Tang, A., C. Owen, F. Biocca, and W. Mou. Comparative effectiveness of augmented reality in object assembly. Conf. Hum. Factors Comput. Syst. - Proc. 2003, pp. 73–80. https://doi.org/10.1145/642611.642626 .
Thakur, K., P. M. Kuber, M. Abdollahi, and E. Rashedi. Why multi-tier surgical instrument table matters? An ergonomic analysis from mento-physical demand perspectives. Appl. Ergon. 2022. https://doi.org/10.1016/j.apergo.2022.103828 .
doi: 10.1016/j.apergo.2022.103828
pubmed: 35777184
Topley, M., and J. G. Richards. A comparison of currently available optoelectronic motion capture systems. J. Biomech.106:109820, 2020.
pubmed: 32517978
doi: 10.1016/j.jbiomech.2020.109820
Wen, J., and M. Gheisari. Using virtual reality to facilitate communication in the AEC domain: a systematic review. Constr. Innov. 20:509–542, 2020.
doi: 10.1108/CI-11-2019-0122
Wodarski, P., J. Jurkojć, J. Polechoński, A. Bieniek, M. Chrzan, R. Michnik, and M. Gzik. Assessment of gait stability and preferred walking speed in virtual reality. Acta Bioeng. Biomech. 2020. https://doi.org/10.37190/ABB-01490-2019-03 .
doi: 10.37190/ABB-01490-2019-03
pubmed: 32307457
Wu, H., K. Huang, Y. Deng, and H. Tu. Exploring the design space of eyes-free target acquisition in virtual environments. Virtual Real. 26:513–524, 2022.
doi: 10.1007/s10055-021-00591-6
Xi, N., J. Chen, F. Gama, M. Riar, and J. Hamari. The challenges of entering the metaverse: an experiment on the effect of extended reality on workload. Inf. Syst. Front. 2022. https://doi.org/10.1007/s10796-022-10244-x .
doi: 10.1007/s10796-022-10244-x
pubmed: 35194390
pmcid: 8852991
Yamada, H., & Doi, T. (2008). Teleoperation of Hydraulic Construction Robot Using Virtual Reality. In Proceedings of the JFPS International Symposium on Fluid Power (Vol. 2008(7–1), pp. 109–114). The Japan Fluid Power System Society.
Yan, Y., Chen, K., Xie, Y., Song, Y., & Liu, Y. (2019). The effects of weight on comfort of virtual reality devices. In Advances in Ergonomics in Design: Proceedings of the AHFE 2018 International Conference on Ergonomics in Design, July 21–25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA 9 (pp. 239–248). Springer International Publishing.
Yang, J., and K. Abdel-Malek. Human reach envelope and zone differentiation for ergonomic design. Hum. Factors Ergon. Manuf. 19:15–34, 2009.
doi: 10.1002/hfm.20135
Yang, W. C., W. L. Hsu, R. M. Wu, T. W. Lu, and K. H. Lin. Motion analysis of axial rotation and gait stability during turning in people with Parkinson’s disease. Gait Posture. 44:83–88, 2016.
pubmed: 27004637
doi: 10.1016/j.gaitpost.2015.10.023
Yavuz, ŞU., A. Şendemir-Ürkmez, and K. S. Türker. Effect of gender, age, fatigue and contraction level on electromechanical delay. Clin. Neurophysiol. 121:1700–1706, 2010.
pubmed: 20430696
doi: 10.1016/j.clinph.2009.10.039
Yu, D., H. N. Liang, F. Lu, V. Nanjappan, K. Papangelis, and W. Wang. Target selection in head-mounted display virtual reality environments. J. Univers. Comput. Sci. 24:1217–1243, 2018.