Dose-dependent effects of acetaminophen and ibuprofen on mitochondrial respiration of human platelets.
Acetaminophen
Buffy coat
Human platelets
Ibuprofen
Mitochondria
Respiration
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
24 Jul 2023
24 Jul 2023
Historique:
received:
04
06
2023
accepted:
14
07
2023
medline:
24
7
2023
pubmed:
24
7
2023
entrez:
24
7
2023
Statut:
aheadofprint
Résumé
Acetaminophen and ibuprofen are widely used over-the-counter medications to reduce fever, pain, and inflammation. Although both drugs are safe in therapeutic concentrations, self-medication is practiced by millions of aged patients with comorbidities that decrease drug metabolism and/or excretion, thus raising the risk of overdosage. Mitochondrial dysfunction has emerged as an important pathomechanism underlying the organ toxicity of both drugs. Assessment of mitochondrial oxygen consumption in peripheral blood cells is a novel research field Cu several applications, including characterization of drug toxicity. The present study, conducted in human platelets isolated from blood donor-derived buffy coat, was aimed at assessing the acute, concentration-dependent effects of each drug on mitochondrial respiration. Using the high-resolution respirometry technique, a concentration-dependent decrease of oxygen consumption in both intact and permeabilized platelets was found for either drug, mainly by inhibiting complex I-supported active respiration. Moreover, ibuprofen significantly decreased the maximal capacity of the electron transport system already from the lowest concentration. In conclusion, platelets from healthy donors represents a population of cells easily available, which can be routinely used in studies assessing mitochondrial drug toxicity. Whether these results can be recapitulated in patients treated with these medications is worth further investigation as potential peripheral biomarker of drug overdose.
Identifiants
pubmed: 37486451
doi: 10.1007/s11010-023-04814-z
pii: 10.1007/s11010-023-04814-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G (2021) Assessment of the biochemical pathways for acetaminophen toxicity: implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 120:104859. https://doi.org/10.1016/j.yrtph.2020.104859
doi: 10.1016/j.yrtph.2020.104859
pubmed: 33388367
Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A (2021) Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 11:3740–3755. https://doi.org/10.1016/j.apsb.2021.09.023
doi: 10.1016/j.apsb.2021.09.023
pubmed: 35024303
pmcid: 8727921
Piel S, Chamkha I, Dehlin AK, Ehinger JK, Sjövall F, Elmér E, Hansson MJ (2020) Cell-permeable succinate prodrugs rescue mitochondrial respiration in cellular models of acute acetaminophen overdose. PLoS ONE 15:e0231173. https://doi.org/10.1371/journal.pone.0231173
doi: 10.1371/journal.pone.0231173
pubmed: 32251487
pmcid: 7135280
Stravitz RT, Lee WM (2019) Acute liver failure. Lancet 394:869–881. https://doi.org/10.1016/s0140-6736(19)31894-x
doi: 10.1016/s0140-6736(19)31894-x
pubmed: 31498101
Scarpignato C, Hunt RH (2010) Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin N Am 39:433–464. https://doi.org/10.1016/j.gtc.2010.08.010
doi: 10.1016/j.gtc.2010.08.010
Mihajlovic M, Vinken M (2022) Mitochondria as the target of hepatotoxicity and drug-induced liver injury: molecular mechanisms and detection methods. Int J Mol Sci. https://doi.org/10.3390/ijms23063315
doi: 10.3390/ijms23063315
pubmed: 35328737
pmcid: 8951158
Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39:221–234. https://doi.org/10.1055/s-0039-1679919
doi: 10.1055/s-0039-1679919
pubmed: 30849782
pmcid: 6800176
Shah AD, Wood DM, Dargan PI (2011) Understanding lactic acidosis in paracetamol (acetaminophen) poisoning. Br J Clin Pharmacol 71:20–28. https://doi.org/10.1111/j.1365-2125.2010.03765.x
doi: 10.1111/j.1365-2125.2010.03765.x
pubmed: 21143497
pmcid: 3018022
Yan M, Huo Y, Yin S, Hu H (2018) Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 17:274–283. https://doi.org/10.1016/j.redox.2018.04.019
doi: 10.1016/j.redox.2018.04.019
pubmed: 29753208
pmcid: 6006912
McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Investig 122:1574–1583. https://doi.org/10.1172/jci59755
doi: 10.1172/jci59755
pubmed: 22378043
pmcid: 3314460
Sandoval-Acuña C, Lopez-Alarcón C, Aliaga ME, Speisky H (2012) Inhibition of mitochondrial complex I by various non-steroidal anti-inflammatory drugs and its protection by quercetin via a coenzyme Q-like action. Chem Biol Interact 199:18–28. https://doi.org/10.1016/j.cbi.2012.05.006
doi: 10.1016/j.cbi.2012.05.006
pubmed: 22652335
Lal N, Kumar J, Erdahl WE, Pfeiffer DR, Gadd ME, Graff G, Yanni JM (2009) Differential effects of non-steroidal anti-inflammatory drugs on mitochondrial dysfunction during oxidative stress. Arch Biochem Biophys 490:1–8. https://doi.org/10.1016/j.abb.2009.07.005
doi: 10.1016/j.abb.2009.07.005
pubmed: 19810214
Moreno-Sánchez R, Bravo C, Vásquez C, Ayala G, Silveira LH, Martínez-Lavín M (1999) Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria, submitochondrial particles, cells, and whole heart. Biochem Pharmacol 57:743–752. https://doi.org/10.1016/s0006-2952(98)00330-x
doi: 10.1016/s0006-2952(98)00330-x
pubmed: 10075080
McGill MR, Jaeschke H (2014) Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol 10:1005–1017. https://doi.org/10.1517/17425255.2014.920823
doi: 10.1517/17425255.2014.920823
pubmed: 24836926
pmcid: 4414250
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L (2021) Utilization of human samples for assessment of mitochondrial bioenergetics: gold standards, limitations, and future perspectives. Life (Basel). https://doi.org/10.3390/life11090949
doi: 10.3390/life11090949
pubmed: 34575097
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I (2019) Assessment of platelet respiration as emerging biomarker of disease. Physiol Res 68:347–363. https://doi.org/10.33549/physiolres.934032
doi: 10.33549/physiolres.934032
pubmed: 30904011
Bînă AM, Aburel OM, Avram VF, Lelcu T, Lința AV, Chiriac DV, Mocanu AG, Bernad E, Borza C, Craina ML, Popa ZL, Muntean DM, Crețu OM (2022) Impairment of mitochondrial respiration in platelets and placentas: a pilot study in preeclamptic pregnancies. Mol Cell Biochem 477:1987–2000. https://doi.org/10.1007/s11010-022-04415-2
doi: 10.1007/s11010-022-04415-2
pubmed: 35389182
pmcid: 9206634
Lelcu T, Bînă AM, Dănilă MD, Popoiu CM, Aburel OM, Arghirescu ST, Borza C, Muntean DM (2021) Assessment of platelet mitochondrial respiration in a pediatric population: a pilot study in healthy children and children with acute lymphoblastic leukemia. Children (Basel). https://doi.org/10.3390/children8121196
doi: 10.3390/children8121196
pubmed: 34943392
Merce APM, Bînă AMB, Avram VFA, Buriman DGB, Lascu AL, Feier HBF, Petrescu LP, Muntean DMM, Elmér EE, Crețu OMC (2022) Cell-permeable succinate improves platelet respiration in patients undergoing cardiopulmonary bypass: a pilot study. Timis Med J 2022:2
Sjövall F, Ehinger JK, Marelsson SE, Morota S, Frostner EA, Uchino H, Lundgren J, Arnbjörnsson E, Hansson MJ, Fellman V, Elmér E (2013) Mitochondrial respiration in human viable platelets—methodology and influence of gender, age and storage. Mitochondrion 13:7–14. https://doi.org/10.1016/j.mito.2012.11.001
doi: 10.1016/j.mito.2012.11.001
pubmed: 23164798
Bețiu AM, Chamkha I, Gustafsson E, Meijer E, Avram VF, Åsander Frostner E, Ehinger JK, Petrescu L, Muntean DM, Elmér E (2021) Cell-permeable succinate rescues mitochondrial respiration in cellular models of amiodarone toxicity. Int J Mol Sci. https://doi.org/10.3390/ijms222111786
doi: 10.3390/ijms222111786
pubmed: 34769217
pmcid: 8583998
Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, Elmér E (2021) Cell-permeable succinate rescues mitochondrial respiration in cellular models of statin toxicity. Int J Mol Sci. https://doi.org/10.3390/ijms22010424
doi: 10.3390/ijms22010424
pubmed: 34769217
pmcid: 8583998
Quincho-Lopez A, Benites-Ibarra CA, Hilario-Gomez MM, Quijano-Escate R, Taype-Rondan A (2021) Self-medication practices to prevent or manage COVID-19: a systematic review. PLoS ONE 16:e0259317. https://doi.org/10.1371/journal.pone.0259317
doi: 10.1371/journal.pone.0259317
pubmed: 34727126
pmcid: 8562851
Rouphael C, D’Amico G, Ricci K, Cywinski J, Miranda C, Koval C, Duggal A, Quintini C, Menon KVN, Miller C, Modaresi Esfeh J (2021) Successful orthotopic liver transplantation in a patient with a positive SARS-CoV2 test and acute liver failure secondary to acetaminophen overdose. Am J Transplant 21:1312–1316. https://doi.org/10.1111/ajt.16330
doi: 10.1111/ajt.16330
pubmed: 33017864
Will Y, Shields JE, Wallace KB (2019) Drug-induced mitochondrial toxicity in the geriatric population: challenges and future directions. Biology (Basel). https://doi.org/10.3390/biology8020032
doi: 10.3390/biology8020032
pubmed: 31083551
Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. Springer, Berlin, pp 431–442
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM (2022) Impairment of mitochondrial respiration in metabolic diseases: an overview. Int J Mol Sci. https://doi.org/10.3390/ijms23168852
doi: 10.3390/ijms23168852
pubmed: 36012137
pmcid: 9408127
Avram VF, Bîna AM, Sima A, Aburel OM, Sturza A, Burlacu O, Timar RZ, Muntean DM, Elmér E, Crețu OM (2021) Improvement of platelet respiration by cell-permeable succinate in diabetic patients treated with statins. Life (Basel). https://doi.org/10.3390/life11040288
doi: 10.3390/life11040288
pubmed: 33800630
Fišar Z, Hroudová J, Zvěřová M, Jirák R, Raboch J, Kitzlerová E (2023) Age-dependent alterations in platelet mitochondrial respiration. Biomedicines. https://doi.org/10.3390/biomedicines11061564
doi: 10.3390/biomedicines11061564
pubmed: 37371659
pmcid: 10295145
Chrøis KM, Larsen S, Pedersen JS, Rygg MO, Boilsen AEB, Bendtsen F, Dela F (2020) Acetaminophen toxicity induces mitochondrial complex I inhibition in human liver tissue. Basic Clin Pharmacol Toxicol 126:86–91. https://doi.org/10.1111/bcpt.13304
doi: 10.1111/bcpt.13304
pubmed: 31403256
Ge X, Hua H, Wang P, Liu J, Zhang Y, Ding G, Zhu C, Huang S, Jia Z, Zhang A (2019) Inhibition of mitochondrial complex I by rotenone protects against acetaminophen-induced liver injury. Am J Transl Res 11:188–198
pubmed: 30787978
pmcid: 6357306
Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep 7:45465. https://doi.org/10.1038/srep45465
doi: 10.1038/srep45465
pubmed: 28374803
pmcid: 5379642
Burcham PC, Harman AW (1991) Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 266:5049–5054
doi: 10.1016/S0021-9258(19)67754-9
pubmed: 2002047
Donnelly PJ, Walker RM, Racz WJ (1994) Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch Toxicol 68:110–118. https://doi.org/10.1007/s002040050043
doi: 10.1007/s002040050043
pubmed: 8179480
Martin FL, McLean AE (1995) Adenosine triphosphate (ATP) levels in paracetamol-induced cell injury in the rat in vivo and in vitro. Toxicology 104:91–97. https://doi.org/10.1016/0300-483x(95)03144-5
doi: 10.1016/0300-483x(95)03144-5
pubmed: 8560507
Lee KK, Imaizumi N, Chamberland SR, Alder NN, Boelsterli UA (2015) Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology 61:326–336. https://doi.org/10.1002/hep.27385
doi: 10.1002/hep.27385
pubmed: 25142022
Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-642-00663-0_12
doi: 10.1007/978-3-642-00663-0_12
pubmed: 20020268
pmcid: 2836803
McGill MR, Hinson JA (2020) The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 52:472–500. https://doi.org/10.1080/03602532.2020.1832112
doi: 10.1080/03602532.2020.1832112
pubmed: 33103516
pmcid: 8427730
Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217
pubmed: 4746329
Ramsay RR, Rashed MS, Nelson SD (1989) In vitro effects of acetaminophen metabolites and analogs on the respiration of mouse liver mitochondria. Arch Biochem Biophys 273:449–457. https://doi.org/10.1016/0003-9861(89)90504-3
doi: 10.1016/0003-9861(89)90504-3
pubmed: 2774561
Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41. https://doi.org/10.1093/toxsci/kfi336
doi: 10.1093/toxsci/kfi336
pubmed: 16177235
Bashir S, Morgan WA (2023) Inhibition of mitochondrial function: an alternative explanation for the antipyretic and hypothermic actions of acetaminophen. Life Sci 312:121194. https://doi.org/10.1016/j.lfs.2022.121194
doi: 10.1016/j.lfs.2022.121194
pubmed: 36379307
Zhao B, Geisslinger G, Hall I, Day RO, Williams KM (1992) The effect of the enantiomers of ibuprofen and flurbiprofen on the beta-oxidation of palmitate in the rat. Chirality 4:137–141. https://doi.org/10.1002/chir.530040302
doi: 10.1002/chir.530040302
pubmed: 1586584
Freneaux E, Fromenty B, Berson A, Labbe G, Degott C, Letteron P, Larrey D, Pessayre D (1990) Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids. J Pharmacol Exp Ther 255:529–535
pubmed: 2123005
Fromenty B, Letteron P, Fisch C, Berson A, Deschamps D, Pessayre D (1993) Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Effects of low concentrations of amiodarone on fatty acid oxidation, ATP levels and cell survival. Biochem Pharmacol 46:421–432. https://doi.org/10.1016/0006-2952(93)90518-2
doi: 10.1016/0006-2952(93)90518-2
pubmed: 8347165
Muntean DM, Sturza A, Dănilă MD, Borza C, Duicu OM, Mornoș C (2016) The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxid Med Cell Longev 2016:8254942. https://doi.org/10.1155/2016/8254942
doi: 10.1155/2016/8254942
pubmed: 27200148
pmcid: 4856919
Kushnareva Y, Newmeyer DD (2010) Bioenergetics and cell death. Ann N Y Acad Sci 1201:50–57. https://doi.org/10.1111/j.1749-6632.2010.05633.x
doi: 10.1111/j.1749-6632.2010.05633.x
pubmed: 20649539
pmcid: 3079367
Moorthy M, Fakurazi S, Ithnin H (2008) Morphological alteration in mitochondria following diclofenac and ibuprofen administration. Pak J Biol Sci 11:1901–1908. https://doi.org/10.3923/pjbs.2008.1901.1908
doi: 10.3923/pjbs.2008.1901.1908
pubmed: 18983031
Browne GS, Nelson C, Nguyen T, Ellis BA, Day RO, Williams KM (1999) Stereoselective and substrate-dependent inhibition of hepatic mitochondria beta-oxidation and oxidative phosphorylation by the non-steroidal anti-inflammatory drugs ibuprofen, flurbiprofen, and ketorolac. Biochem Pharmacol 57:837–844. https://doi.org/10.1016/s0006-2952(98)00342-6
doi: 10.1016/s0006-2952(98)00342-6
pubmed: 10075090
van Leeuwen JS, Unlü B, Vermeulen NP, Vos JC (2012) Differential involvement of mitochondrial dysfunction, cytochrome P450 activity, and active transport in the toxicity of structurally related NSAIDs. Toxicol In Vitro 26:197–205. https://doi.org/10.1016/j.tiv.2011.11.013
doi: 10.1016/j.tiv.2011.11.013
pubmed: 22138569
Fromenty B, Fisch C, Berson A, Letteron P, Larrey D, Pessayre D (1990) Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II. J Pharmacol Exp Ther 255:1377–1384
pubmed: 1979817
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. Int J Mol Sci. https://doi.org/10.3390/ijms232113653
doi: 10.3390/ijms232113653
pubmed: 36362438
pmcid: 9656474
Baños G, Reyes PA (1989) A comparative study of the effect of ten non-steroidal anti-inflammatory drugs (NSAIDs) upon some mitochondrial and platelet functions. Int J Biochem 21:1387–1394. https://doi.org/10.1016/0020-711x(89)90161-4
doi: 10.1016/0020-711x(89)90161-4
pubmed: 2533113
Al-Nasser IA (2000) Ibuprofen-induced liver mitochondrial permeability transition. Toxicol Lett 111:213–218. https://doi.org/10.1016/s0378-4274(99)00180-0
doi: 10.1016/s0378-4274(99)00180-0
pubmed: 10643865
Masubuchi Y, Nakayama S, Horie T (2002) Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Hepatology 35:544–551. https://doi.org/10.1053/jhep.2002.31871
doi: 10.1053/jhep.2002.31871
pubmed: 11870366
Mehlisch DR, Sykes J (2013) Ibuprofen blood plasma levels and onset of analgesia. Int J Clin Pract Suppl. https://doi.org/10.1111/ijcp.12053
doi: 10.1111/ijcp.12053
pubmed: 23163542
Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA (1989) Stereoselective plasma protein binding of ibuprofen enantiomers. Eur J Clin Pharmacol 36:283–290. https://doi.org/10.1007/bf00558161
doi: 10.1007/bf00558161
pubmed: 2744069
Bennett MJ, Rinaldo P, Strauss AW (2000) Inborn errors of mitochondrial fatty acid oxidation. Crit Rev Clin Lab Sci 37:1–44. https://doi.org/10.1080/10408360091174169
doi: 10.1080/10408360091174169
pubmed: 10737439
Davies NM, Wright MR, Russell AS, Jamali F (1996) Effect of the enantiomers of flurbiprofen, ibuprofen, and ketoprofen on intestinal permeability. J Pharm Sci 85:1170–1173. https://doi.org/10.1021/js960276y
doi: 10.1021/js960276y
pubmed: 8923320
Sodeifian F, Seyedalhosseini ZS, Kian N, Eftekhari M, Najari S, Mirsaeidi M, Farsi Y, Nasiri MJ (2021) Drug-induced liver injury in COVID-19 patients: a systematic review. Front Med (Lausanne) 8:731436. https://doi.org/10.3389/fmed.2021.731436
doi: 10.3389/fmed.2021.731436
pubmed: 34616757
Prescott LF (2000) Paracetamol, alcohol and the liver. Br J Clin Pharmacol 49:291–301. https://doi.org/10.1046/j.1365-2125.2000.00167.x
doi: 10.1046/j.1365-2125.2000.00167.x
pubmed: 10759684
pmcid: 2014937
Kumar S, Singla B, Singh AK, Thomas-Gooch SM, Zhi K, Singh UP (2022) Hepatic, extrahepatic and extracellular vesicle cytochrome P450 2E1 in alcohol and acetaminophen-mediated adverse interactions and potential treatment options. Cells. https://doi.org/10.3390/cells11172620
doi: 10.3390/cells11172620
pubmed: 36611892
pmcid: 9818386
Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560. https://doi.org/10.1016/s0092-8674(00)80691-1
doi: 10.1016/s0092-8674(00)80691-1
pubmed: 10721992