An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol.

Aldol reaction Aldolase Cascade reactions Rare sugar Whole cell

Journal

Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 15 01 2023
accepted: 10 06 2023
revised: 25 05 2023
medline: 28 8 2023
pubmed: 24 7 2023
entrez: 24 7 2023
Statut: ppublish

Résumé

In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.

Identifiants

pubmed: 37486554
doi: 10.1007/s10529-023-03415-6
pii: 10.1007/s10529-023-03415-6
doi:

Substances chimiques

Ketoses 0
Sorbose NV2001607Y
Glycerol PDC6A3C0OX
Glyceraldehyde 367-47-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1355-1364

Subventions

Organisme : National Natural Science Foundation of China
ID : 32171475
Organisme : Natural Science Foundation of Jiangsu Province
ID : No. BK20210465

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Beerens K, Van Overtveldt S, Desmet T (2017) The “epimerring” highlights the potential of carbohydrate epimerases for rare sugar production. Biocatal Biotransfor 35:230–237
doi: 10.1080/10242422.2017.1306738
Bilal M, Iqbal HMN, Hu HB, Wang W, Zhang XH (2018) Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci 58:2768–2778
doi: 10.1080/10408398.2017.1341385
Chen X, Wang W, Xu J, Yuan Z, Yuan T, Zhang Y, Liang C, He M, Guo Y (2017) Production of D-psicose from D-glucose by co-expression of D-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol 105:18–23
doi: 10.1016/j.enzmictec.2017.06.003 pubmed: 28756856
Chen Z, Li ZJ, Li F, Wang N, Gao XD (2020) Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorg Med Chem 28:115464
doi: 10.1016/j.bmc.2020.115464 pubmed: 32249029
Emmadi M, Kulkarni SS (2014) Recent advances in synthesis of bacterial rare sugar building blocks and their applications. Nat Prod Rep 31:870–879
doi: 10.1039/C4NP00003J pubmed: 24700208
Han Y, Yoon J, Choi MS (2020) Tracing the anti-inflammatory mechanism/triggers of D-allulose: A profile study of microbiome composition and mRNA expression in diet-induced obese mice. Mol Nutr Food Res 64:1900982
doi: 10.1002/mnfr.201900982
Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, Nagata Y, Tokuda M (2015) Rare sugar D-allulose: potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Therapeut 155:49–59
doi: 10.1016/j.pharmthera.2015.08.004
Iwasaki Y, Sendo M, Dezaki K, Hira T et al (2018) GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Commun. https://doi.org/10.1038/s41467-017-02488-y
doi: 10.1038/s41467-017-02488-y pubmed: 30287823 pmcid: 6172276
Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y (2018) Whole-cell biotransformation of benzene to phenol catalysed by intracellular cytochrome P450BM3 activated by external additives. Angew Chem Int Ed 57:12264–12269
doi: 10.1002/anie.201804924
Laurent V, Darii E, Aujon A, Debacker M et al (2018) Synthesis of branched-chain sugars with a DHAP-dependent aldolase: ketones are electrophile substrates of rhamnulose-1-phosphate aldolases. Angew Chem Int Edit 57:5467–5471
doi: 10.1002/anie.201712851
Li ZJ, Cai L, Qi QS, Styslinger TJ, Zhao GH, Wang PG (2011) Synthesis of rare sugars with L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8. Bioorg Med Chem Lett 21:5084–5087
doi: 10.1016/j.bmcl.2011.03.072 pubmed: 21482110 pmcid: 3445428
Li ZJ, Cai L, Wei MH, Wang PG (2012) One-pot four-enzyme synthesis of ketoses with fructose 1,6-bisphosphate aldolases from Staphylococcus carnosus and rabbit muscle. Carbohydr Res 357:143–146
doi: 10.1016/j.carres.2012.05.007 pubmed: 22727596 pmcid: 3396761
Li ZJ, Li Y, Duan SL, Liu J, Yuan P, Nakanishi H, Gao XD (2015a) Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores. J Ind Microbiol Biotechnol 42:1117–1128
doi: 10.1007/s10295-015-1631-8 pubmed: 26065389
Li ZJ, Qiao YX, Cai L, Nakanishi H, Gao XD (2015b) Characterization of glycerol phosphate oxidase from Streptococcus pneumoniae and its application for ketose synthesis. Bioorg Med Chem Lett 25:504–507
doi: 10.1016/j.bmcl.2014.12.032 pubmed: 25556096
Li ZJ, Wu XR, Cai L, Duan SL, Liu J, Yuan P, Nakanishi H, Gao XD (2015c) Enzymatic synthesis of rare sugars with L-rhamnulose-1-phosphate aldolase from Thermotoga maritima MSB8. Bioorg Med Chem Lett 25:3980–3983
doi: 10.1016/j.bmcl.2015.07.027 pubmed: 26227774
Li ZJ, Li F, Cai L, Chen Z, Qin L, Gao XD (2020) One-pot multienzyme synthesis of rare ketoses from glycerol. J Agric Food Chem 68:1347–1353
doi: 10.1021/acs.jafc.9b06748 pubmed: 31961681
Liu JJ, Zhang GC, Kwak S, Oh EJ, Yun EJ, Chomvong K, Cate JHD, Jin YS (2019) Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat Commun. https://doi.org/10.1038/s41467-019-09288-6
doi: 10.1038/s41467-019-09288-6 pubmed: 31863007 pmcid: 6925282
Lustig RH (2010) Fructose: metabolic, hedonic, and societal parallels with ethanol. J Am Diet Assoc 110:1307–1321
doi: 10.1016/j.jada.2010.06.008 pubmed: 20800122
Lustig RH, Schmidt LA, Brindis CD (2012) The toxic truth about sugar. Nature 482:27–29
doi: 10.1038/482027a pubmed: 22297952
Van Herk T, Hartog AF, Schoemaker HE, Wever R (2006) Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: Increased efficiency by phosphate cycling. J Org Chem 71:6244–6247
doi: 10.1021/jo060644a pubmed: 16872211
Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis. Angew Chem Int Ed 54:4182–4186
doi: 10.1002/anie.201411279
Wei MH, Li ZJ, Li TH, Wu BL, Liu YP, Qu JY, Li X, Li L, Cai L, Wang PG (2015) Transforming flask reaction into cell-based synthesis: Production of polyhydroxylated molecules via engineered Escherichia coli. ACS Catal 5:4060–4065
doi: 10.1021/acscatal.5b00953
Wen LQ, Huang K, Wei MH, Meisner J, Liu YP, Garner K, Zang LL, Wang X, Li X, Fang JQ, Zhang HC, Wang PG (2015) Facile enzymatic synthesis of ketoses. Angew Chem Int Edit 54:12654–12658
doi: 10.1002/anie.201505714
Wen LQ, Zang LL, Huang K, Li SS, Wang RL, Wang PG (2016) Efficient enzymatic synthesis of L-rhamnulose and L-fuculose. Bioorg Med Chem Lett 26:969–972
doi: 10.1016/j.bmcl.2015.12.051 pubmed: 26778148
Yang J, Zhu Y, Men Y, Sun S, Zeng Y, Zhang Y, Sun Y, Ma Y (2016) Pathway construction in Corynebacterium glutamicum and strain engineering to produce rare sugars from glycerol. J Agric Food Chem 64:9497–9505
doi: 10.1021/acs.jafc.6b03423 pubmed: 27998065
Yang JG, Zhu YM, Qu G, Zeng Y, Tian CY, Dong CX, Men Y, Dai LH, Sun ZT, Sun YX, Ma YH (2018) Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. Biotechnol Biofuels 11:290
doi: 10.1186/s13068-018-1293-7 pubmed: 30386427 pmcid: 6202814

Auteurs

Yahui Gao (Y)

School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.

Fen Li (F)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.

Yulu Wang (Y)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.

Zhou Chen (Z)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.

Zijie Li (Z)

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. lizijie@jiangnan.edu.cn.

Articles similaires

Lisinopril Animals Hydrochlorothiazide Intestinal Absorption Rabbits
Animals 3-Hydroxybutyric Acid Male Fasting Mice
Wound Healing Hydrogels Animals Orchidaceae Plant Extracts
Pyrococcus furiosus Escherichia coli Bioreactors Recombinant Proteins DNA-Directed DNA Polymerase

Classifications MeSH