A machine learning approach to model the impact of line edge roughness on gate-all-around nanowire FETs while reducing the carbon footprint.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2023
Historique:
received: 23 05 2023
accepted: 07 07 2023
medline: 26 7 2023
pubmed: 24 7 2023
entrez: 24 7 2023
Statut: epublish

Résumé

The performance and reliability of semiconductor devices scaled down to the sub-nanometer regime are being seriously affected by process-induced variability. To properly assess the impact of the different sources of fluctuations, such as line edge roughness (LER), statistical analyses involving large samples of device configurations are needed. The computational cost of such studies can be very high if 3D advanced simulation tools (TCAD) that include quantum effects are used. In this work, we present a machine learning approach to model the impact of LER on two gate-all-around nanowire FETs that is able to dramatically decrease the computational effort, thus reducing the carbon footprint of the study, while obtaining great accuracy. Finally, we demonstrate that transfer learning techniques can decrease the computing cost even further, being the carbon footprint of the study just 0.18 g of CO2 (whereas a single device TCAD study can produce up to 2.6 kg of CO2), while obtaining coefficient of determination values larger than 0.985 when using only a 10% of the input samples.

Identifiants

pubmed: 37486944
doi: 10.1371/journal.pone.0288964
pii: PONE-D-23-15843
pmc: PMC10365313
doi:

Substances chimiques

Carbon Dioxide 142M471B3J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0288964

Informations de copyright

Copyright: © 2023 García-Loureiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Materials (Basel). 2019 Jul 26;12(15):
pubmed: 31357496
Transp Res D Transp Environ. 2018 Oct;64:5-14
pubmed: 30740029
Int Stat Rev. 2014 Dec 1;82(3):359-361
pubmed: 25844011
Sci Rep. 2022 Jan 21;12(1):1140
pubmed: 35064166
ACS Nano. 2016 Mar 22;10(3):2995-3014
pubmed: 26862780

Auteurs

Antonio García-Loureiro (A)

CITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Natalia Seoane (N)

CITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Julián G Fernández (JG)

CITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Enrique Comesaña (E)

Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Lugo, Spain.

Juan C Pichel (JC)

CITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Humans Middle Aged Female Male Surveys and Questionnaires

Classifications MeSH