Label-free discrimination of extracellular vesicles from large lipoproteins.

concentration extracellular vesicles interferometric scattering lipoproteins plasma refractive index size

Journal

Journal of extracellular vesicles
ISSN: 2001-3078
Titre abrégé: J Extracell Vesicles
Pays: United States
ID NLM: 101610479

Informations de publication

Date de publication:
08 2023
Historique:
revised: 05 05 2023
received: 11 11 2022
accepted: 26 05 2023
medline: 27 7 2023
pubmed: 25 7 2023
entrez: 25 7 2023
Statut: ppublish

Résumé

Extracellular vesicles (EVs) are increasingly gaining interest as biomarkers and therapeutics. Accurate sizing and quantification of EVs remain problematic, given their nanometre size range and small scattering cross-sections. This is compounded by the fact that common EV isolation methods result in co-isolation of particles with comparable features. Especially in blood plasma, similarly-sized lipoproteins outnumber EVs to a great extent. Recently, interferometric nanoparticle tracking analysis (iNTA) was introduced as a particle analysis method that enables determining the size and refractive index of nanoparticles with high sensitivity and precision. In this work, we apply iNTA to differentiate between EVs and lipoproteins, and compare its performance to conventional nanoparticle tracking analysis (NTA). We show that iNTA can accurately quantify EVs in artificial EV-lipoprotein mixtures and in plasma-derived EV samples of varying complexity. Conventional NTA could not report on EV numbers, as it was not able to distinguish EVs from lipoproteins. iNTA has the potential to become a new standard for label-free EV characterization in suspension.

Identifiants

pubmed: 37489102
doi: 10.1002/jev2.12348
pmc: PMC10366660
doi:

Substances chimiques

Lipoproteins 0
Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12348

Informations de copyright

© 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

Références

Allan, D. B., Caswell, T., Keim, N. C., van der Wel, C. M., & Verweij, R. W. (2021). soft-matter/trackpy: Trackpy v0.5.0.
Arab, T., Mallick, E. R., Huang, Y., Dong, L., Liao, Z., Zhao, Z., Gololobova, O., Smith, B., Haughey, N. J., Pienta, K. J., Slusher, B. S., Tarwater, P. M., Tosar, J. P., Zivkovic, A. M., Vreeland, W. N., Paulaitis, M. E., & Witwer, K. W. (2021). Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. Journal of Extracellular Vesicles, 10(6), e12079.
Bai, K., Barnett, G. V., Kar, S. R., & Das, T. K. (2017). Interference from proteins and surfactants on particle size distributions measured by nanoparticle tracking analysis (NTA). Pharmaceutical Research, 34, 800-808.
Botha, J., Handberg, A., & Simonsen, J. B. (2022). Lipid-based strategies used to identify extracellular vesicles in flow cytometry can be confounded by lipoproteins: Evaluations of annexin V, lactadherin, and detergent lysis. Journal of Extracellular Vesicles, 11(4), e12200.
Breiman, L. (2001). Mach. Learn, 45, 5-32.
Brennan, K., Martin, K., FitzGerald, S. P., Wu, Y., Blanco, A., Richardson, C., & Mc Gee, M. M. (2020). A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Scientific Reports, 10(1), 1-13.
Busatto, S., Yang, Y., Walker, S. A., Davidovich, I., Lin, W. H., Lewis-Tuffin, L., Anastasiadis, P. Z., Sarkaria, J., Talmon, Y., Wurtz, G., & Wolfram, J. (2020). Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanbiotechnology, 18, 162.
Chernova, D. N., Konokhova, A. I., Novikova, O. A., Yurkin, M. A., Strokotov, D. I., Karpenko, A. A., Chernyshev, A. V., & Maltsev, V. P. (2018). Chylomicrons against light scattering: The battle for characterization. Journal of Biophotonics, 11(10), e201700381.
Van Deun, J., Jo, A., Li, H., Lin, Y., Weissleder, R., Im, H., & Lee, H. (2020). Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Advanced Biosystems, 4(12), 1900310.
Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., Wever, O. D., & Hendrix, A. (2014). The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of Extracellular Vesicles, 3, 24858.
Geeurickx, E., Tulkens, J., Dhondt, B., Van Deun, J., Lippens, L., Vergauwen, G., Heyrman, E., De Sutter, D., Gevaert, K., Impens, F., Miinalainen, I., Van Bockstal, P., De Beer, T., Wauben, M. H. M., Nolte-t-Hoen, E. N., Bloch, K., Swinnen, J. V., Nieuwland, R., Braems, G., … Hendrix, A. (2019). The generation and use of recombinant extracellular vesicles as biological reference material. Nature Communications, 10(1), 1-12.
Kashkanova, A. D., Blessing, M., Gemeinhardt, A., Soulat, D., & Sandoghdar, V. (2022). Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586-593.
Kashkanova, A. D., Shkarin, A. B., Mahmoodabadi, R. G., Blessing, M., Tuna, Y., Gemeinhardt, A., & Sandoghdar, V. (2021). Precision single-particle localization using radial variance transform. Optics Express, 29, 11070-11083.
Lee, H., Dindorf, J., Eberhardt, M., Lai, X., Ostalecki, C., Koliha, N., Gross, S., Blume, K., Bruns, H., Wild, S., Schuler, G., Vera, J., & Baur, A. S. (2019). Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Science Alliance, 2(2), e201800205.
Libregts, W. M., Rikkert, L. G., Hau, C. M., Nieuwland, R., & Coumans, A. W. (2019). Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. Journal of Extracellular Vesicles, 8(1), 1643671.
Lindfors, K., Kalkbrenner, T., Stoller, P., & Sandoghdar, V. (2004). Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Physical Review Letters, 93(3), 037401.
Packard, C. J., & Shepherd, J. (1997). Lipoprotein heterogeneity and apolipoprotein b metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 3542-3556.
Ridolfi, A., Conti, L., Brucale, M., Frigerio, R., Cardellini, J., Musicò, A., Romano, M., Zendrini, A., Polito, L., Bergamaschi, G., Gori, A., Montis, C., Barile, L., Berti, D., Radeghieri, A., Bergese, P., Cretich, M., & Valle, F. (2022). Compositional profiling of EV-lipoprotein mixtures by AFM nanomechanical imaging. BioRxiv, 2022.07.19.500441. Compositional profiling of EV-lipoprotein mixtures by AFM nanomechanical imaging.
Simonsen, J. B. (2017). What are we looking at? extracellular vesicles, lipoproteins, or both? Circulation Research, 121, 920-922.
Sódar, B. W., Kittel, Á., Pálóczi, K., Vukman, K. V., Osteikoetxea, X., Szabó-Taylor, K., Németh, A., Sperlágh, B., Baranyai, T., Giricz, Z., Wiener, Z., Turiák, L., Drahos, L., Pállinger, É., Vékey, K., Ferdinandy, P., Falus, A., & Buzás, E. I. (2016). Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 6, 24316.
Stein, H., Spindler, S., Bonakdar, N., Wang, C., & Sandoghdar, V. (2017). Production of isolated giant unilamellar vesicles under high salt concentrations. Frontiers in Physiology, 8, 63.
Taylor, R. W., & Sandoghdar, V. (2019). Interferometric scattering microscopy: Seeing single nanoparticles and molecules via rayleigh scattering. Nano Letters, 19, 4827-4835.
Usfoor, Z., Kaufmann, K., Rakib, A. S. H., Hergenroder, R., & Shpacovitch, V. (2020). Features of sizing and enumeration of silica and¨ polystyrene nanoparticles by nanoparticle tracking analysis (NTA). Sensors, 20, 6611.
van der Pol, E., de Rond, L., Coumans, F. A., Gool, E. L., Böing, A. N., Sturk, A., Nieuwland, R., & van Leeuwen, T. G. (2018). Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 801-810.
Van Deun, J., Mestdagh, P., Agostinis, P., Akay, Ö., Anand, S., Anckaert, J., Martinez, Z. A., Baetens, T., Beghein, E., Bertier, L., Berx, G., Boere, J., Boukouris, S., Bremer, M., Buschmann, D., Byrd, J. B., Casert, C., Cheng, L., Cmoch, A., … Hendrix, A. (2017). EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14(3), 228-232.
Vergauwen, G., Dhondt, B., Van Deun, J., De Smedt, E., Berx, G., Timmerman, E., Gevaert, K., Miinalainen, I., Cocquyt, V., Braems, G., Denys, H., De Wever, O., & Hendrix, A. (2017). Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Scientific Reports, 7(1), 1-12.
Vergauwen, G., Tulkens, J., Pinheiro, C., Cobos, F. A., Dedeyne, S., Scheerder, A. D., Vandekerckhove, L., Impens, F., Miinalainen, I., Braems, G., Gevaert, K., Mestdagh, P., Vandesompele, J., Denys, H., Wever, O. D., & Hendrix, A. (2021). Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape of systemically circulating extracellular vesicles across clinical conditions. Journal of Extracellular Vesicles, 10(10), e12122.
Vestad, B., Llorente, A., Neurauter, A., Phuyal, S., Kierulf, B., Kierulf, P., Skotland, T., Sandvig, K. F., Haug, K. B., & Øvstebø, R. (2017). Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study. Journal of Extracellular Vesicles, 6(1), 1344087.
Welsh, J. A., Der Pol, E. V., Arkesteijn, J. A., Bremer, M., Brisson, A., Coumans, F., Dignat-George, F., Duggan, E., Ghiran, I., Giebel, B., Görgens, A., Hendrix, A., Lacroix, R., Lannigan, J., Libregts, W. M., Lozano-Andrés, E., Morales-Kastresana, A., Robert, S., Rond, L. D., … Jones, J. C. (2020). MIFlowCyt-EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles, 9(1), 1713526.
Wojczynski, M. K., Glasser, S. P., Oberman, A., Kabagambe, E. K., Hopkins, P. N., Tsai, M. Y., Straka, R. J., Ordovas, J. M., & Arnett, D. K. (2011). High-fat meal effect on LDL, HDL, and VLDL particle size and number in the genetics of lipid-lowering drugs and diet network (GOLDN): An interventional study. Lipids in Health and Disease, 10, 181.

Auteurs

Anna D Kashkanova (AD)

Max Planck Institute for the Science of Light, Erlangen, Germany.
Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.

Martin Blessing (M)

Max Planck Institute for the Science of Light, Erlangen, Germany.
Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Marie Reischke (M)

Max Planck Institute for the Science of Light, Erlangen, Germany.

Jan-Ole Baur (JO)

Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Andreas S Baur (AS)

Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Vahid Sandoghdar (V)

Max Planck Institute for the Science of Light, Erlangen, Germany.
Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Jan Van Deun (J)

Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Articles similaires

C-Reactive Protein Humans Biomarkers Inflammation
Humans Retrospective Studies Male Critical Illness Female
Humans Male Female Intensive Care Units COVID-19

Classifications MeSH