Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.
cerebral microbleed (CMB)
deep learning
detection
knowledge distillation
magnetic resonance imaging
quantitative susceptibility mapping (QSM)
susceptibility-weighted image (SWI)
Journal
Frontiers in neuroinformatics
ISSN: 1662-5196
Titre abrégé: Front Neuroinform
Pays: Switzerland
ID NLM: 101477957
Informations de publication
Date de publication:
2023
2023
Historique:
received:
11
04
2023
accepted:
19
06
2023
medline:
26
7
2023
pubmed:
26
7
2023
entrez:
26
7
2023
Statut:
epublish
Résumé
Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.
Identifiants
pubmed: 37492242
doi: 10.3389/fninf.2023.1204186
pmc: PMC10363739
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1204186Subventions
Organisme : British Heart Foundation
ID : PG/14/96/31262
Pays : United Kingdom
Informations de copyright
Copyright © 2023 Sundaresan, Arthofer, Zamboni, Murchison, Dineen, Rothwell, Auer, Wang, Miller, Tendler, Alfaro-Almagro, Sotiropoulos, Sprigg, Griffanti and Jenkinson.
Déclaration de conflit d'intérêts
MJ and LG receive royalties from licensing of FSL to non-academic, commercial parties. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Magn Reson Imaging. 2015 Jul;42(1):23-41
pubmed: 25270052
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7933-6
pubmed: 26738132
BMJ Open. 2018 Feb 3;8(2):e019930
pubmed: 29431141
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1055-1058
pubmed: 33018167
IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
pubmed: 11293691
Neuroimage Clin. 2018 Aug 04;20:498-505
pubmed: 30140608
Neurology. 2021 Aug 18;:
pubmed: 34408070
Neuroimage. 2012 Feb 1;59(3):2266-73
pubmed: 21985903
Neuroimage Clin. 2016 Jul 02;12:241-51
pubmed: 27489772
AJNR Am J Neuroradiol. 2013 Jun-Jul;34(6):E61-4
pubmed: 22345502
Magn Reson Med. 2004 Sep;52(3):612-8
pubmed: 15334582
Front Neurosci. 2019 May 17;13:422
pubmed: 31156359
Comput Med Imaging Graph. 2015 Dec;46 Pt 3:269-76
pubmed: 26560677
Nat Neurosci. 2022 Jun;25(6):818-831
pubmed: 35606419
AJNR Am J Neuroradiol. 2009 Feb;30(2):338-43
pubmed: 19001544
AJNR Am J Neuroradiol. 2015 Jun;36(6):1089-95
pubmed: 25698623
Lancet Neurol. 2009 Feb;8(2):165-74
pubmed: 19161908
IEEE Trans Med Imaging. 2016 May;35(5):1182-1195
pubmed: 26886975
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
JAMA Neurol. 2022 May 1;79(5):468-477
pubmed: 35311937
Neuroimage Clin. 2013 Feb 09;2:282-90
pubmed: 24179783
PLoS One. 2011 Mar 23;6(3):e17547
pubmed: 21448456
Neurology. 2009 Nov 24;73(21):1759-66
pubmed: 19933977
Magn Reson Imaging. 2011 Jul;29(6):844-52
pubmed: 21571479
J Digit Imaging. 2019 Oct;32(5):766-772
pubmed: 30511280
Front Neuroinform. 2022 Jan 20;15:777828
pubmed: 35126079
Sci Rep. 2021 Jul 8;11(1):14124
pubmed: 34238951
PLoS One. 2013 Jun 21;8(6):e66610
pubmed: 23805246
Neuroimage. 2019 Sep;198:271-282
pubmed: 31121296
Sci Rep. 2021 Feb 17;11(1):4004
pubmed: 33597663
Lancet. 2004 Jun 12;363(9425):1925-33
pubmed: 15194251
Lancet. 2018 May 26;391(10135):2107-2115
pubmed: 29778325
Brain. 2007 Aug;130(Pt 8):1988-2003
pubmed: 17322562