Acute Toxicity of Copper to Three Species of Pacific Salmon Fry in Water with Low Hardness and Low Dissolved Organic Carbon.


Journal

Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958

Informations de publication

Date de publication:
11 2023
Historique:
revised: 11 03 2023
received: 14 02 2023
accepted: 21 07 2023
medline: 23 10 2023
pubmed: 26 7 2023
entrez: 26 7 2023
Statut: ppublish

Résumé

Proposed development of a mine within Alaska's Bristol Bay watershed (USA) has raised concerns about the potential impact of copper (Cu) on Pacific salmon (Oncorhynchus spp.). We conducted 96-h flow-through bioassays using low-hardness and low dissolved organic carbon water to determine the acute lethal toxicity of Cu to sockeye (Oncorhynchus nerka), Chinook (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) fry. We aimed to determine Cu toxicity under field-relevant water quality conditions and to assess three methods of calculating ambient Cu criteria: the biotic ligand model (BLM), a multiple linear regression model endorsed by the US Environmental Protection Agency, and the hardness-based model currently used by the State of Alaska. The criteria generated by all models were below 20% lethal Cu concentrations by factors ranging from 2.2 to 54.3, indicating that all criteria would be protective against mortality. The multiple linear regression-based criteria were the most conservative and were comparable to BLM-based criteria. The median lethal concentrations (LC50s) for sockeye, Chinook, and coho were 35.2, 23.9, and 6.3 µg Cu/L, respectively. We also used the BLM to predict LC50s for each species. Model predictions differed from empirical LC50s by factors of 0.7 for sockeye and Chinook salmon, and 1.1 for coho salmon. These differences fell within the acceptable range of ±2, indicating the model's accuracy. We calculated critical lethal Cu accumulation values for each species to account for differing water chemistry in each bioassay; the present study revealed that coho salmon were most sensitive to Cu, followed by sockeye and Chinook salmon. Our findings underscore the importance of considering site- and species-specific factors when modeling Cu toxicity. The empirical data we present may enhance Cu risk assessments for Pacific salmon. Environ Toxicol Chem 2023;42:2440-2452. © 2023 SETAC.

Identifiants

pubmed: 37493065
doi: 10.1002/etc.5724
doi:

Substances chimiques

Dissolved Organic Matter 0
Copper 789U1901C5
Water Pollutants, Chemical 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2440-2452

Informations de copyright

© 2023 SETAC.

Références

Abrey, C. A. (2005). Variation in the early life history of sockeye salmon (Oncorhynchus nerka): Emergence timing, an ontogenetic shift, and population productivity (Order No. 3163367) [Doctoral dissertation, University of Washington]. ProQuest Dissertations & Theses Global.
Adams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability assessment of metals in freshwater environments: A historical review. Environmental Toxicology and Chemistry, 39(1), 48-59. https://doi.org/10.1002/etc.4558
Alaska Department of Fish and Game. (2022). Anadromous waters catalog. https://www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG=maps.dataFiles
Baldwin, D. H., Sandahl, J. F., Labenia, J. S., & Scholz, N. L. (2003). Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environmental Toxicology and Chemistry, 22(10), 2266-2274. https://doi.org/10.1897/02-428
Benoit, D. A., Mattson, V. R., & Olson, D. L. (1982). A continuous-flow mini-diluter system for toxicity testing. Water Research, 16(4), 457-464. https://doi.org/10.1016/0043-1354(82)90171-3
Blair, G. R., Rogers, D. E., & Quinn, T. P. (1993). Variation in life history characteristics and morphology of sockeye salmon in the Kvichack River system, Bristol Bay, Alaska. Transactions of the American Fisheries Society, 122(4), 550-559. https://doi.org/10.1577/1548-8659(1993)122<0550:VILHCA>2.3.CO;2
Bowen, H. J. M. (1985). The cycles of copper, silver and gold. In O. Hutzinger (Ed.), The natural environment and the biogeochemical cycles (Vol. 1, pp. 1-27). Springer. https://doi.org/10.1007/978-3-540-39209-5_1
Brix, K. V., DeForest, D. K., Tear, L., Grosell, M., & Adams, W. J. (2017). Use of multiple linear regression models for setting water quality criteria for copper: A complementary approach to the biotic ligand model. Environmental Science & Technology, 51(9), 5182-5192. https://doi.org/10.1021/acs.est.6b05533
Brix, K. V., DeForest, D. K., Tear, L., Peijnenburg, W., Peters, A., Middleton, E. T., & Erickson, R. (2020). Development of empirical bioavailability models for metals. Environmental Toxicology and Chemistry, 39(1), 85-100. https://doi.org/10.1002/etc.4570
Brix, K. V., Tear, L., Santore, R. C., Croteau, K., & DeForest, D. K. (2021). Comparative performance of multiple linear regression and biotic ligand models for estimating the bioavailability of copper in freshwater. Environmental Toxicology and Chemistry, 40(6), 1649-1661. https://doi.org/10.1002/etc.5012
Buhl, K. J., & Hamilton, S. J. (1991). Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics. Ecotoxicology and Environmental Safety, 22, 184-194. https://doi.org/10.1016/0147-6513(91)90058-W
Cadmus, P., Brinkman, S. F., & May, M. K. (2018). Chronic toxicity of ferric iron for North American aquatic organisms: Derivation of a chronic water quality criterion using single species and mesocosm data. Archives of Environmental Contamination and Toxicology, 74(4), 605-615. https://doi.org/10.1007/s00244-018-0505-2
Calfee, R. D., Little, E. E., Puglis, H. J., Scott, E., Brumbaugh, W. G., & Mebane, C. A. (2014). Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures. Environmental Toxicology and Chemistry, 33(10), 2259-2272. https://doi.org/10.1002/etc.2684
Carothers, C., Black, J., Langdon, S. J., Donkersloot, R., Ringer, D., Coleman, J., Gavenus, E. R., Justin, W., Williams, M., Christiansen, F., Samuelson, J., Stevens, C., Woods, B., Clark, S. J., Clay, P. M., Mack, L., Raymond-Yakoubian, J., Sanders, A. A., Stevens, B. L., & Whiting, A. (2021). Indigenous peoples and salmon stewardship: A critical relationship. Ecology and Society, 26(1), 16. https://doi.org/10.5751/ES-11972-260116
Chapman, G. A. (1975). Toxicity of copper, cadmium and zinc to Pacific Northwest salmonids (TASK 002 ROAP 10CAR). National Environmental Research Center, Office of Research and Development, US Environmental Protection Agency.
Chapman, G. A. (1978). Toxicities of cadmium, copper, and zinc to four juvenile stages of Chinook salmon and steelhead. Transactions of the American Fisheries Society, 107(6), 841-847. https://doi.org/10.1577/1548-8659(1978)107<841:TOCCAZ>2.0.CO;2
Crémazy, A., Wood, C. M., Ng, T. Y.-T., Smith, D. S., & Chowdhury, M. J. (2017). Experimentally derived acute and chronic copper biotic ligand models for rainbow trout. Aquatic Toxicology, 192, 224-240. https://doi.org/10.1016/j.aquatox.2017.07.013
DeForest, D. K., Brix, K. V., Tear, L. M., & Adams, W. J. (2018). Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines. Environmental Toxicology and Chemistry, 37(1), 80-90. https://doi.org/10.1002/etc.3922
Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 20(10), 2383-2396. https://doi.org/10.1002/etc.5620201034
Franken, R. J. M., Storey, R. G., & Williams, D. D. (2001). Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444, 183-195.
Geist, D. R., Hanrahan, T. P., Arntzen, E. V., McMichael, G. A., Murray, C. J., & Chien, Y.-J. (2002). Physicochemical characteristics of the hyporheic zone affect redd site selection by chum salmon and fall Chinook salmon in the Columbia River. North American Journal of Fisheries Management, 22(4), 1077-1085. https://doi.org/10.1577/1548-8675(2002)022<1077:PCOTHZ>2.0.CO;2
Habicht, C., Seeb, L. W., & Seeb, J. E. (2007). Genetic and ecological divergence defines population structure of sockeye salmon populations returning to Bristol Bay, Alaska, and provides a tool for admixture analysis. Transactions of the American Fisheries Society, 136(1), 82-94. https://doi.org/10.1577/T06-001.1
Hansen, J. A., Marr, J. C. A., Lipton, J., Cacela, D., & Bergman, H. L. (1999). Differences in neurobehavioral responses of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance. Environmental Toxicology and Chemistry, 18(9), 1972-1978. https://doi.org/10.1002/etc.5620180916
Healey, M. C. (1991). Life history of Chinook salmon (Oncorhynchus tshawytscha). In C. Groot & L. Margolis (Eds.), Pacific salmon life histories (pp. 313-393). UBC Press.
Hébert, K. (2016). Chronicle of a disaster foretold: Scientific risk assessment, public participation, and the politics of imperilment in Bristol Bay, Alaska. Journal of the Royal Anthropological Institute, 22(S1), 108-126. https://doi.org/10.1111/1467-9655.12396
Hoppe, S., Gustafsson, J.-P., Borg, H., & Breitholtz, M. (2015). Evaluation of current copper bioavailability tools for soft freshwaters in Sweden. Ecotoxicology and Environmental Safety, 114, 143-149. https://doi.org/10.1016/j.ecoenv.2015.01.023
Laurén, D. J., & McDonald, D. G. (1985). Effects of copper on branchial ionoregulation in the rainbow trout, Salmo gairdneri Richardson. Journal of Comparative Physiology B, 155(5), 635-644. https://doi.org/10.1007/BF00694455
Linbo, T. L., Baldwin, D. H., McIntyre, J. K., & Scholz, N. L. (2009). Effects of water hardness, alkalinity, and dissolved organic carbon on the toxicity of copper to the lateral line of developing fish. Environmental Toxicology and Chemistry, 28(7), 1455-1461. https://doi.org/10.1897/08-283.1
Macoustra, G. K., Jolley, D. F., Stauber, J., Koppel, D. J., & Holland, A. (2020). Amelioration of copper toxicity to a tropical freshwater microalga: Effect of natural DOM source and season. Environmental Pollution, 266, 115141. https://doi.org/10.1016/j.envpol.2020.115141
McDonald, D. G., & Rogano, M. S. (1986). Ion regulation by the rainbow trout, Salmo gairdneri, in ion-poor water. Physiological Zoology, 59(3), 318-331. https://doi.org/10.1086/physzool.59.3.30156103
Meador, J. P. (1991). The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquatic Toxicology, 19(1), 13-31. https://doi.org/10.1016/0166-445X(91)90025-5
Mebane, C. A. (2022). Bioavailability and toxicity models of copper and zinc to freshwater life: The state of the science and alternatives for water quality criteria [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/smynf
Mebane, C. A., Chowdhury, M. J., De Schamphelaere, K. A. C., Lofts, S., Paquin, P. R., Santore, R. C., & Wood, C. M. (2020). Metal bioavailability models: Current status, lessons learned, considerations for regulatory use, and the path forward. Environmental Toxicology and Chemistry, 39(1), 60-84. https://doi.org/10.1002/etc.4560
Meyer, J. S., & Adams, W. J. (2010). Relationship between biotic ligand model-based water quality criteria and avoidance and olfactory responses to copper by fish. Environmental Toxicology and Chemistry, 29(9), 2096-2103. https://doi.org/10.1002/etc.254
Meyer, J. S., Boese, C. J., & Morris, J. M. (2007). Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas). Aquatic Toxicology, 84(2), 268-278. https://doi.org/10.1016/j.aquatox.2006.12.022
Meyer, J. S., Clearwater, S. J., Doser, T. A., Rogaczewski, M. J., & Hansen, J. A. (2007). Effects of water chemistry on bioavailability and toxicity of waterborne cadmium, copper, nickel, lead, and zinc to freshwater organisms. SETAC Press.
Meyer, J. S., & DeForest, D. K. (2018). Protectiveness of Cu water quality criteria against impairment of behavior and chemo/mechanosensory responses: An update. Environmental Toxicology and Chemistry, 37(5), 1260-1279. https://doi.org/10.1002/etc.4096
Meyer, J. S., Traudt, E. M., & Ranville, J. F. (2018). Is the factor-of-2 rule broadly applicable for evaluating the prediction accuracy of metal-toxicity models? Bulletin of Environmental Contamination and Toxicology, 100(1), 64-68. https://doi.org/10.1007/s00128-017-2258-4
Morris, J. M., Brinkman, S. F., Carney, M. W., & Lipton, J. (2019). Copper toxicity in Bristol Bay headwaters: Part 1-Acute mortality and ambient water quality criteria in low-hardness water. Environmental Toxicology and Chemistry, 38(1), 190-197. https://doi.org/10.1002/etc.4252
Morris, J. M., Brinkman, S. F., Takeshita, R., McFadden, A. K., Carney, M. W., & Lipton, J. (2019). Copper toxicity in Bristol Bay headwaters: Part 2-Olfactory inhibition in low-hardness water. Environmental Toxicology and Chemistry, 38(1), 198-209. https://doi.org/10.1002/etc.4295
Nor, Y. M. (1987). Ecotoxicity of copper to aquatic biota: A review. Environmental Research, 43, 274-282. https://doi.org/10.1016/S0013-9351(87)80078-6
Northey, S., Haque, N., & Mudd, G. (2013). Using sustainability reporting to assess the environmental footprint of copper mining. Journal of Cleaner Production, 40, 118-128. https://doi.org/10.1016/j.jclepro.2012.09.027
Pagenkopf, G. K. (1983). Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environmental Science & Technology, 17(6), 342-347. https://doi.org/10.1021/es00112a007
Pagenkopf, G. K., Russo, R. C., & Thurston, R. V. (1974). Effect of complexation on toxicity of copper to fishes. Journal of the Fisheries Research Board of Canada, 31(4), 462-465. https://doi.org/10.1139/f74-077
Paquin, P. R., Gorsuch, J. W., Apte, S., Batley, G. E., Bowles, K. C., Campbell, P. G. C., Delos, C. G., Di Toro, D. M., Dwyer, R. L., Galvez, F., Gensemer, R. W., Goss, G. G., Hogstrand, C., Janssen, C. R., McGeer, J. C., Naddy, R. B., Playle, R. C., Santore, R. C., Schneider, U., & Wu, K. B. (2002). The biotic ligand model: A historical overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1), 3-35. https://doi.org/10.1016/S1532-0456(02)00112-6
Pascariu, M.-C., Tulucan, T., Niculescu, M., Sebarchievici, I., & Ștefănuț, M. N. (2016). Water quality survey of streams from Retezat Mountains (Romania. Journal of Environmental Geography, 9(3-4), 27-32. https://doi.org/10.1515/jengeo-2016-0009
Pebble Limited Partnership. (2011a). Pebble project environmental baseline document 2004 through 2008. Chapter 9. Water Quality Bristol Bay Drainages. http://www.pebbleresearch.com/ebd/bristol-bay-phys-chem-env/chapter-9/
Pebble Limited Partnership. (2011b). Pebble project environmental baseline document 2004 through 2008. Chapter 15. Fish and aquatic invertebrates-Bristol Bay drainages. https://pebbleresearch.files.wordpress.com/2014/03/ch_15_fish_and_aquatic_inverts_bb.pdf
Playle, R. C., Gensemer, R. W., & Dixon, D. G. (1992). Copper accumulation on gills of fathead minnows: Influence of water hardness, complexation and pH of the gill micro-environment. Environmental Toxicology and Chemistry, 11(3), 381-391. https://doi.org/10.1002/etc.5620110312
Quinn, T. P. (2018). The behavior and ecology of Pacific salmon and trout (2nd ed.). University of Washington Press.
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ritz, C. (2010). Toward a unified approach to dose-response modeling in ecotoxicology. Environmental Toxicology and Chemistry, 29(1), 220-229. https://doi.org/10.1002/etc.7
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS One, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021
Ruhala, S. S., Zarnetske, J. P., Long, D. T., Lee-Cullin, J. A., Plont, S., & Wiewiora, E. R. (2018). Exploring dissolved organic carbon cycling at the stream-groundwater interface across a third-order, lowland stream network. Biogeochemistry, 137(1), 105-126. https://doi.org/10.1007/s10533-017-0404-z
Sandahl, J. F., Baldwin, D. H., Jenkins, J. J., & Scholz, N. L. (2007). A sensory system at the interface between urban stormwater runoff and salmon survival. Environmental Science & Technology, 41(8), 2998-3004. https://doi.org/10.1021/es062287r
Sandercock, F. K. (1991). Life history of coho salmon (Oncorhynchus kisutch). In C. Groot & L. Margolis (Eds.), Pacific salmon life histories (pp. 397-445). UBC Press.
Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., & Meyer, J. S. (2001). Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry, 20(10), 2397-2402. https://doi.org/10.1002/etc.5620201035
Santore, R. C., & Driscoll, C. T. (1995). The CHESS model for calculating chemical equilibria in soils and solutions. In R. H. Loeppert, A. P. Schwab & S. Goldberg (Eds.), Chemical equilibrium and reaction models (pp. 357-375). John Wiley & Sons. https://doi.org/10.2136/sssaspecpub42.c17
Santore, R. C., & Ryan, A. C. (2015). Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Environmental Toxicology and Chemistry, 34(4), 777-787. https://doi.org/10.1002/etc.2869
Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609-612. https://doi.org/10.1038/nature09060
Schipper, B. W., Lin, H.-C., Meloni, M. A., Wansleeben, K., Heijungs, R., & van der Voet, E. (2018). Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling, 132, 28-36. https://doi.org/10.1016/j.resconrec.2018.01.004
State of Alaska Department of Environmental Conservation. (2008). Alaska water quality criteria manual for toxic and other deleterious organic and inorganic substances. https://www.epa.gov/sites/default/files/2014-12/documents/ak-toxics-manual.pdf
Stephan, C. E., Mount, D. I., Hansen, D. J., Gentile, J. R., Chapman, G. A., & Brungs, W. A. (1985). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. US Environmental Protection Agency.
Taylor, L. N., McGeer, J. C., Wood, C. M., & McDonald, D. G. (2000). Physiological effects of chronic copper exposure to rainbow trout (Oncorhynchus mykiss) in hard and soft water: Evaluation of chronic indicators. Environmental Toxicology and Chemistry, 19(9), 2298-2308. https://doi.org/10.1002/etc.5620190920
Tipping, E. (1994). WHAMC-A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Computers & Geosciences, 20(6), 973-1023. https://doi.org/10.1016/0098-3004(94)90038-8
US Army Corps of Engineers. (2020). Pebble project final environmental impact statement. https://www.arlis.org/docs/vol1/Pebble/Final-EIS/
US Environmental Protection Agency. (1986). Quality criteria for water (EPA 440/5-86-001).
US Environmental Protection Agency. (1993). Method 300.0: Determination of inorganic anions by ion chromatography.
US Environmental Protection Agency. (2004). Method 9060A: Total organic carbon.
US Environmental Protection Agency. (2007). Aquatic life ambient freshwater quality criteria-Copper (EPA-822-R-07-001). https://www.epa.gov/sites/default/files/2019-02/documents/al-freshwater-copper-2007-revision.pdf
US Environmental Protection Agency. (2014). An assessment of potential mining impacts on salmon ecosystems of Bristol Bay, Alaska (EPA 910-R-14-001A). https://www.epa.gov/sites/default/files/2015-05/documents/bristol_bay_assessment_final_2014_vol1.pdf
US Environmental Protection Agency. (2022a). Response to external peer review comments on EPA's metals CRADA phase I report (EPA 822-R-22-001). https://www.epa.gov/wqc/metals-crada-phase-1-report
US Environmental Protection Agency. (2022b). Metals cooperative research and development agreement (CRADA) phase I report: Development of an overarching bioavailability modeling approach to support USEPA's aquatic life water quality criteria for metals (EPA 822-R-22-001). https://www.epa.gov/wqc/metals-crada-phase-1-report
US Environmental Protection Agency. (2023). Final determination of the US Environmental Protection Agency pursuant to section 404(C) of the Clean Water Act, Pebble Deposit Area, Southwest Alaska. https://www.epa.gov/bristolbay/final-determination-pebble-deposit-area
Van Genderen, E. J., Tomasso, J. R., & Klaine, S. J. (2008). Influence of copper exposure on whole-body sodium levels in larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 27(6), 1442. https://doi.org/10.1897/07-467.1
Weber, C. I. (1993). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (EPA/600/4-90/027F). US Environmental Protection Agency.
Welsh, P. G., Lipton, J., Mebane, C. A., & Marr, J. C. A. (2008). Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Ecotoxicology and Environmental Safety, 69, 199-208. https://doi.org/10.1016/j.ecoenv.2007.04.003
Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77(3), 591-625. https://doi.org/10.1152/physrev.1997.77.3.591
Windward Environmental. (2019). Biotic ligand model Windows Interface, Research Ver. 3.41.2.45: User's guide and reference manual.
Wood, C. M. (2001). Toxic responses of the gill. In D. Schlenk & W. H. Benson (Eds.), Target organ toxicity in marine and freshwater teleosts: Organs (Vol. 1, pp. 1-89). Taylor & Francis.
Woody, C. A., & O'Neal, S. L. (2010). Fish surveys in headwater streams of the Nushagak and Kvichak river drainages Bristol Bay, Alaska, 2008-2010. The Nature Conservancy. https://www.nature.org/media/alaska/awc_dec_2010.pdf
Zitko, V., & Carson, W. G. (1976). A mechanism of the effects of water hardness on the lethality of heavy metals to fish. Chemosphere, 5(5), 299-303. https://doi.org/10.1016/0045-6535(76)90003-5

Auteurs

Drew E Porter (DE)

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
Water and Environment Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Jeffrey M Morris (JM)

Abt Associates, Boulder, Colorado, USA.

Michelle P Trifari (MP)

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
Water and Environment Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Matthew J Wooller (MJ)

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
Water and Environment Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Peter A H Westley (PAH)

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Kristen B Gorman (KB)

College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Benjamin D Barst (BD)

Water and Environment Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH