Biosynthesis and Gene Regulation of Rhamnolipid Congeners.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
26 Jul 2023
Historique:
received: 04 02 2023
accepted: 05 07 2023
medline: 27 7 2023
pubmed: 26 7 2023
entrez: 26 7 2023
Statut: epublish

Résumé

Rhamnolipid congeners have been widely used in agriculture and biomedicine as potent surfactants. They have recently attracted attention due to their diverse and versatile biological functions, which include an important bacterial virulence factor that makes them attractive targets for research into biosynthetic pathways and gene regulation. The intricate gene expression and regulation network controlling their biosynthesis remain to be completely understood. This article summarizes current knowledge about the biosynthesis pathways and regulatory mechanisms of rhamnolipid congeners, that meet the pharmacological needs of human health and agriculture.

Identifiants

pubmed: 37493824
doi: 10.1007/s00284-023-03405-x
pii: 10.1007/s00284-023-03405-x
doi:

Substances chimiques

rhamnolipid 0
Glycolipids 0
Surface-Active Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

302

Subventions

Organisme : Natural Foundation of Zhejiang Province
ID : LGF21H300003
Organisme : Key Laboratory of Tropical Marine Ecosystem and Bioresource, MNR
ID : 2021QN03
Organisme : National Key Research and Development Program of China
ID : 2022YFC2804104
Organisme : National Natural Science Foundation of China
ID : 42276137
Organisme : Key Research and Development Program of Zhejiang Province
ID : 2021C03084

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Raza ZA, Khalid ZM, Banat IM (2009) Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Heal 44:1367–1373. https://doi.org/10.1080/10934520903217138
doi: 10.1080/10934520903217138
Nakata K, Ishigami Y (1999) A facile procedure of remediation for oily waste with rhamnolipid biosurfactant. J Environ Sci Heal 34:1129–1142. https://doi.org/10.1080/10934529909376886
doi: 10.1080/10934529909376886
Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H (2017) Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 101:1–11. https://doi.org/10.1016/j.actamat.2017.07.029
doi: 10.1016/j.actamat.2017.07.029
Brenner DJ, McWhorter AC, Kai A, Steigerwalt AG, Farmer JJ (1986) Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23:1114–1120. https://doi.org/10.1128/jcm.23.6.1114-1120.1986
doi: 10.1128/jcm.23.6.1114-1120.1986 pubmed: 3711302 pmcid: 268805
Ownsend SM, Hurrell E, Caubilla-Barron J, LocCarrillo C, Forsythe SJ (2008) Characterization of 967 an extended-spectrum beta-lactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. Microbiology 154:3659–3667. https://doi.org/10.1099/mic.0.2008/021980-0
doi: 10.1099/mic.0.2008/021980-0
Edwards JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421. https://doi.org/10.1016/0003-9861(65)90204-3
doi: 10.1016/0003-9861(65)90204-3 pubmed: 4285853
Bazire A, Dufour A (2014) The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 14:1–9. https://doi.org/10.1186/1471-2180-14-160
doi: 10.1186/1471-2180-14-160
Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M (2017) Rhamnolipids, microbial virulence factors, in alzheimer’s disease. J Alzheimer’s Dis 59:209–222. https://doi.org/10.3233/JAD-161020
doi: 10.3233/JAD-161020
Abdelmawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164. https://doi.org/10.1016/j.chembiol.2013.11.010
doi: 10.1016/j.chembiol.2013.11.010 pubmed: 24374163
Six DA, Yuan Y, Leeds JA, Meredith TC (2014) Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility. Antimicrob Agents Chemother 58:153–161. https://doi.org/10.1128/aac.01804-13
doi: 10.1128/aac.01804-13 pubmed: 24145528 pmcid: 3910788
Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šir M, Čejková A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51. https://doi.org/10.1016/j.jbiotec.2014.11.014
doi: 10.1016/j.jbiotec.2014.11.014 pubmed: 25433178
Yuan Y, Sachdeva M, Leeds JA, Meredith TC (2012) Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases. J Bacteriol 194:5171–5184. https://doi.org/10.1128/jb.00792-12
doi: 10.1128/jb.00792-12 pubmed: 22753059 pmcid: 3457228
Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT (2010) Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS ONE 5:13557. https://doi.org/10.1371/journal.pone.0013557
doi: 10.1371/journal.pone.0013557
Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154. https://doi.org/10.1128/jb.00080-08
doi: 10.1128/jb.00080-08 pubmed: 18326581 pmcid: 2347404
Dobler L, Vilela LF, Almeida RV, Neves BC (2015) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 33:123–135. https://doi.org/10.1016/j.nbt.2015.09.005
doi: 10.1016/j.nbt.2015.09.005 pubmed: 26409933
Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 1:2595–2602. https://doi.org/10.1016/S0021-9258(18)67872-X
doi: 10.1016/S0021-9258(18)67872-X
Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiol 2146:2803–2814. https://doi.org/10.1099/00221287-146-11-2803
doi: 10.1099/00221287-146-11-2803
Olvera C, Goldberg JB, Sánchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90. https://doi.org/10.1016/S0378-1097(99)00381-X
doi: 10.1016/S0378-1097(99)00381-X pubmed: 10481091
Zegans ME, Wozniak D, Griffin E, Toutainkidd CM, Hammond JH, Garfoot A, Lam JS (2012) Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 56:4112–4122. https://doi.org/10.1128/aac.00373-12
doi: 10.1128/aac.00373-12 pubmed: 22585230 pmcid: 3421584
Arun SP, Asim KJ (2020) Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: improvement through co-substrate optimization. J Environ Chem Eng 8:2213–3437. https://doi.org/10.1016/j.jece.2020.104304
doi: 10.1016/j.jece.2020.104304
Jagruti VJ, Padmini A, Sneha Y, Amit PP, Sandeep BK (2019) Sunflower acid oil-based production of rharmnolipid using Pseudomonas aeruginosa and its application in liquid detergents. J Surfact Deterg 22:463–476. https://doi.org/10.1002/jsde.12255
doi: 10.1002/jsde.12255
Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:646–653. https://doi.org/10.1093/nar/gkv1227
doi: 10.1093/nar/gkv1227
Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878. https://doi.org/10.1007/s00253-016-8041-3
doi: 10.1007/s00253-016-8041-3 pubmed: 27988798
Zhao F, Cui Q, Han S, Dong H, Zhang J, Ma F, Zhang Y (2015) Enhanced rhamnolipid production of Pseudomonas aeruginosa SG by increasing copy number of rhlAB genes with modified promoter. RSC Adv 5:70546–70552. https://doi.org/10.1039/C5RA13415C
doi: 10.1039/C5RA13415C
Tang T, Fu LH, Xie WH, Luo YZ, Zhang YT, Zhang JZ, Si T (2023) RhlA exhibits dual thioesterase and acyltransferase activities during rhamnolipid biosynthesis. ACS catal 13:5759–5766. https://doi.org/10.1021/acscatal.3c00046
doi: 10.1021/acscatal.3c00046
Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795. https://doi.org/10.1016/S0021-9258(17)32089-6
doi: 10.1016/S0021-9258(17)32089-6 pubmed: 8051059
Tremblay J, Richardson AP, Lépine F, Déziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 10:2622–2630. https://doi.org/10.1111/j.1462-2920.2007.01396.x
doi: 10.1111/j.1462-2920.2007.01396.x
Han L, Liu P, Peng Y, Lin J, Wang Q, Ma Y (2014) Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery. J Appl Microbiol 117:139–150. https://doi.org/10.1111/jam.12515
doi: 10.1111/jam.12515 pubmed: 24703158
Ratridewi I, Dzulkarnain SA, Wijaya AB, Barlianto W, Santoso W, Santosaningsih D (2020) Piper betle leaf extract exhibits anti-virulence properties by downregulating rhamnolipid gene expression (rhlC) of Pseudomonas aeruginosa. Open Access Maced J Medical Sci 8:928–931. https://doi.org/10.3889/oamjms.2020.5247
doi: 10.3889/oamjms.2020.5247
Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x
doi: 10.1111/j.1365-2958.2005.04743.x pubmed: 16101996
Merced G, Hwan CM, Tian B, Ju X, Kook RJ, Ok KM, You-Hee C, Chul YS, Kaufmann GF (2013) Simultaneous inhibition of rhamnolipid and polyhydroxyalkanoic acid synthesis and biofilm formation in Pseudomonas aeruginosa by 2-bromoalkanoic acids: effect of inhibitor alkyl-chain-length. PLoS One 8:73986. https://doi.org/10.1371/journal.pone.0073986
doi: 10.1371/journal.pone.0073986
Reis RS, Pereira AG, Neves BC, Freire DM (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa–a review. Bioresour Technol 102:6377–6384. https://doi.org/10.1016/j.biortech.2011.03.074
doi: 10.1016/j.biortech.2011.03.074 pubmed: 21498076
Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. https://doi.org/10.1007/s00253-011-3368-2
doi: 10.1007/s00253-011-3368-2 pubmed: 21667084
Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33:1715–1726. https://doi.org/10.1016/j.biotechadv.2015.09.002
doi: 10.1016/j.biotechadv.2015.09.002 pubmed: 26384475
Soukarieh F, Williams P, Stocks MJ, Camara M (2018) Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. J Med Chem 61:10385–10402. https://doi.org/10.1021/acs.jmedchem.8b00540
doi: 10.1021/acs.jmedchem.8b00540 pubmed: 29999316
Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiol 155:712–723. https://doi.org/10.1099/mic.0.022764-0
doi: 10.1099/mic.0.022764-0
Gerardo M, Katy J, Brenda V, Gloria S (2003) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983. https://doi.org/10.1128/jb.185.20.5976-5983.2003
doi: 10.1128/jb.185.20.5976-5983.2003
Medina G, Juárez K, Soberón-Chávez G (2003) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185:377–380. https://doi.org/10.1128/jb.185.1.377-380.2003
doi: 10.1128/jb.185.1.377-380.2003 pubmed: 12486077 pmcid: 141836
Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P (2016) Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLos Pathog 12:e1006029. https://doi.org/10.1371/journal.ppat.1006029
doi: 10.1371/journal.ppat.1006029 pubmed: 27851827 pmcid: 5112799
Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 262:1689–1699. https://doi.org/10.1111/j.1365-2958.2006.05462.x
doi: 10.1111/j.1365-2958.2006.05462.x
Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Cámara M, Truman A, Chhabra SR, Emsley J, Williams P (2013) Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLos Pathog. 9:e1003508. https://doi.org/10.1371/journal.ppat.1003508
doi: 10.1371/journal.ppat.1003508 pubmed: 23935486 pmcid: 3723537
Chen JW, Lu YJ, Ye F, Zhang HF, Zhou YL, Li JT, Wu Q, Xu XW, Wu QH, Wei B, Zhang HW, Wang H (2022) A small-molecule inhibitor of the anthranilyl-CoA synthetase pqsA for the treatment of multidrug-resistant Pseudomonas aeruginosa. Microbiol Spectr 10:2721–2764. https://doi.org/10.1128/spectrum.02764-21
doi: 10.1128/spectrum.02764-21
Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051. https://doi.org/10.1128/jb.00753-08
doi: 10.1128/jb.00753-08 pubmed: 18776012 pmcid: 2580708
Shen Y, Vanessa J, Janine S, Ingo F, Stefan W, Erik S, Susanne HU, Wulf B (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochem 48:10298–10307. https://doi.org/10.1021/bi900123j
doi: 10.1021/bi900123j
Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Cámara M, Williams P (2010) Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol 12:1659–1673. https://doi.org/10.1111/j.1462-2920.2010.02214.x
doi: 10.1111/j.1462-2920.2010.02214.x pubmed: 20406282 pmcid: 2901523
Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG (2010) Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. Plos Pathog 6:e1000810. https://doi.org/10.1371/journal.ppat.1000810
doi: 10.1371/journal.ppat.1000810 pubmed: 20300606 pmcid: 2837411
Simanek KA, Taylor IR, Richael EK, Lasek-Nesselquist E, Bassler BL, Paczkowski JE (2022) The PqsE-RhlR interaction regulates RhlR DNA binding to control virulence factor production. Microbiol Spectr 10:2108–2121. https://doi.org/10.1128/spectrum.02108-21
doi: 10.1128/spectrum.02108-21
Taylor IR, Paczkowski JE, Jeffrey PD, Henke BR, Smith CD, Bassler BL (2021) Inhibitor mimetic mutations in the PqsE enzyme reveal a protein-protein interaction with the quorum-sensing receptor RhlR that is vital for virulence factor production. ACS Chem Biol 16:740–752. https://doi.org/10.1021/acschembio.1c00049
doi: 10.1021/acschembio.1c00049 pubmed: 33793200 pmcid: 8056388
Dandekar A, Greenberg E (2013) Plan B for quorum sensing. Nat Chem Biol 9:292–293. https://doi.org/10.1038/nchembio.1233
doi: 10.1038/nchembio.1233 pubmed: 23594781
Biosurfactants: production and applications (2013) https://www.semanticscholar.org/paper/Chapter-2-Biosurfactants-%3A-Production-and-Reis-Pacheco/fe3c10992d837198ebd394e7a54742cc0c48111e . Accessed 2023
Cai Z, Liu Y, Chen Y, Yam JKH, Chew SC, Chua SL, Wang K, Givskov M, Yang L (2015) RpoN regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. Int J Mol Sci 16:28311–28319. https://doi.org/10.3390/ijms161226103
doi: 10.3390/ijms161226103 pubmed: 26633362 pmcid: 4691050
Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dotsch A, Hornischer K, Bruchmann S, Duvel J, Haussler S (2015) Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. Plos Pathog 11:e1004744. https://doi.org/10.1371/journal.ppat.1004744
doi: 10.1371/journal.ppat.1004744 pubmed: 25780925 pmcid: 4362757
Schuster M, Hawkins AC, Harwood CS, Greenberg E (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985. https://doi.org/10.1046/j.1365-2958.2003.03886.x
doi: 10.1046/j.1365-2958.2003.03886.x pubmed: 14763974
Chiang SM, Schellhorn HE (2010) Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J Mol Evol 70:557–571. https://doi.org/10.1007/s00239-010-9352-0
doi: 10.1007/s00239-010-9352-0 pubmed: 20506020
Liang H, Deng X, Ji Q, Sun F, Shen T, He C (2012) The Pseudomonas aeruginosa global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression. J Bacterial 194:3098–3108. https://doi.org/10.1128/jb.06679-11
doi: 10.1128/jb.06679-11
Yang N, Ding S, Chen F, Zhang X, Xia Y, Di H, Cao Q, Deng X, Wu M, Wong CCL (2015) The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 96:526–547. https://doi.org/10.1111/mmi.12954
doi: 10.1111/mmi.12954 pubmed: 25641250
Zhang L, Gao Q, Chen W, Qin H, Heng ZW, Chen Y, Yang L, Zhang G (2013) Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiol 159:1931–1936. https://doi.org/10.1099/mic.0.066266-0
doi: 10.1099/mic.0.066266-0
Wenner N, Maes A, Cotado-Sampayo M, Lapouge K (2014) NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 16:1053–1068. https://doi.org/10.1111/1462-2920.12272
doi: 10.1111/1462-2920.12272 pubmed: 24308329
Okkotsu Y, Tieku P, Fitzsimmons LF, Churchill ME, Schurr MJ (2013) Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol 195:5499–5515. https://doi.org/10.1128/jb.00726-13
doi: 10.1128/jb.00726-13 pubmed: 24097945 pmcid: 3889618
Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H (2015) ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 43:8268–8282. https://doi.org/10.1093/nar/gkv747
doi: 10.1093/nar/gkv747 pubmed: 26206672 pmcid: 4787818
Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 66:1557–1565. https://doi.org/10.1111/j.1365-2958.2007.06029.x
doi: 10.1111/j.1365-2958.2007.06029.x pubmed: 18045385
Kang H, Gan J, Zhao J, Kong W, Jing Z, Miao Z, Fan L, Song Y, Jin Q, Liang H (2016) Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Res 45:699–710. https://doi.org/10.1093/nar/gkw954
doi: 10.1093/nar/gkw954 pubmed: 27924027 pmcid: 5314801
Ren B, Shen H, Lu ZJ, Liu H, Xu Y (2014) The phzA2-G2 transcript exhibits direct RsmA-mediated activation in Pseudomonas aeruginosa M18. PLos One 9:e89653. https://doi.org/10.1371/journal.pone.0089653
doi: 10.1371/journal.pone.0089653 pubmed: 24586939 pmcid: 3933668
Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945. https://doi.org/10.1128/jb.186.10.2936-2945.2004
doi: 10.1128/jb.186.10.2936-2945.2004 pubmed: 15126453 pmcid: 400603
Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. W J Micro Bio 28:2783–2790. https://doi.org/10.1007/s11274-012-1088-0
doi: 10.1007/s11274-012-1088-0
Kahraman H, Erenler S (2012) Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Appl Biochem Micro 48:188–193. https://doi.org/10.1134/S000368381202007X
doi: 10.1134/S000368381202007X
Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J App Microbiol 118:379–389. https://doi.org/10.1111/jam.12698
doi: 10.1111/jam.12698
Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199. https://doi.org/10.1016/j.biortech.2007.05.035
doi: 10.1016/j.biortech.2007.05.035 pubmed: 17611103
Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194. https://doi.org/10.1007/s00253-006-0468-5
doi: 10.1007/s00253-006-0468-5 pubmed: 16847602
Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853. https://doi.org/10.1002/bit.21462
doi: 10.1002/bit.21462 pubmed: 17486652
Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 6:3503–3506. https://doi.org/10.1128/aem.61.9.3503-3506.1995
doi: 10.1128/aem.61.9.3503-3506.1995
Solaiman DK, Ashby RD, Gunther NW IV, Zerkowski JA (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Environ Microbiol 99:4333–4342. https://doi.org/10.1007/s00253-015-6433-4
doi: 10.1007/s00253-015-6433-4
Gong ZJ, Peng YF, Zhang YT, Song GT, Chen WJ, Jia S, Wang QH (2015) Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant. Chin J Biotechnol 31:1050–1062. https://doi.org/10.4014/jmb.1104.04048
doi: 10.4014/jmb.1104.04048
Setoodeh P, Jahanmiri A, Eslamloueyan R, Niazi A, Ayatollahi SS, Aram F, Mahmoodi M, Hortamani A (2014) Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory Pseudomonas putida KT2440. Mol Biotechnol 56:175–191. https://doi.org/10.1007/s12033-013-9693-1
doi: 10.1007/s12033-013-9693-1 pubmed: 23943464
Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80. https://doi.org/10.1186/1475-2859-10-80
doi: 10.1186/1475-2859-10-80 pubmed: 21999513 pmcid: 3258213
Tavares LF, Silva PM, Junqueira M, Mariano D, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. https://doi.org/10.1007/s00253-012-4454-9
doi: 10.1007/s00253-012-4454-9 pubmed: 23053103

Auteurs

Jianwei Chen (J)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China. cjw983617@zjut.edu.cn.

Xiaoya Yu (X)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Xingyue Lu (X)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Wei Wang (W)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Jiangwei Pan (J)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Qunjian Yin (Q)

Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.

Bin Wei (B)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Huawei Zhang (H)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.

Hong Wang (H)

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China. hongw@zjut.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH