Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
19
12
2022
accepted:
03
07
2023
revised:
07
08
2023
medline:
8
8
2023
pubmed:
26
7
2023
entrez:
26
7
2023
Statut:
epublish
Résumé
Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.
Identifiants
pubmed: 37494386
doi: 10.1371/journal.ppat.1011528
pii: PPATHOGENS-D-22-02192
pmc: PMC10406308
doi:
Substances chimiques
Viral Replicase Complex Proteins
0
Viral Fusion Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1011528Informations de copyright
Copyright: © 2023 Sakamoto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Pathol. 2015 Jan;235(2):253-65
pubmed: 25294240
J Biol Chem. 2001 Nov 16;276(46):43205-15
pubmed: 11544254
J Virol. 2013 Mar;87(5):2648-59
pubmed: 23255801
Virology. 2007 May 25;362(1):235-44
pubmed: 17434199
Dev Med Child Neurol. 2010 Oct;52(10):901-7
pubmed: 20561004
J Clin Invest. 1995 Nov;96(5):2478-81
pubmed: 7593637
Virology. 2022 Aug;573:1-11
pubmed: 35679629
J Infect Dis. 1984 Sep;150(3):340-7
pubmed: 6481183
Virology. 2001 Dec 20;291(2):215-25
pubmed: 11878891
J Virol. 2021 Jun 24;95(14):e0052821
pubmed: 33910952
Arch Dis Child. 2004 Dec;89(12):1145-8
pubmed: 15557053
Nat Med. 2021 Mar;27(3):360-361
pubmed: 33589823
Nature. 2000 Aug 24;406(6798):893-7
pubmed: 10972291
J Virol. 2007 Jul;81(13):6827-36
pubmed: 17442724
J Infect Dis. 2005 Nov 15;192(10):1686-93
pubmed: 16235165
Viruses. 2016 Apr 21;8(4):112
pubmed: 27110811
Viruses. 2016 Sep 20;8(9):
pubmed: 27657109
Rev Med Virol. 2019 Sep;29(5):e2058
pubmed: 31237061
Microbes Infect. 2009 Apr;11(4):467-75
pubmed: 19397874
J Virol. 2019 Feb 5;93(4):
pubmed: 30487282
J Neurovirol. 1997 Aug;3(4):304-9
pubmed: 9291239
Proc Natl Acad Sci U S A. 2021 May 4;118(18):
pubmed: 33903248
Cell. 1988 Oct 21;55(2):255-65
pubmed: 3167982
J Cell Sci. 2019 Aug 23;132(16):
pubmed: 31331966
J Virol. 1989 Mar;63(3):1162-73
pubmed: 2915379
J Virol. 2010 Nov;84(21):11189-99
pubmed: 20719945
Microbiol Immunol. 1982;26(12):1195-202
pubmed: 7169972
J Virol. 2015 Mar;89(5):2710-7
pubmed: 25520515
J Virol. 2018 Feb 26;92(6):
pubmed: 29298883
MMWR Morb Mortal Wkly Rep. 2020 Nov 13;69(45):1700-1705
pubmed: 33180759
J Virol. 1988 Apr;62(4):1388-97
pubmed: 3346948
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2496-2501
pubmed: 29463726
Curr Opin Virol. 2014 Apr;5:16-23
pubmed: 24492202
Virology. 2015 May;479-480:518-31
pubmed: 25771804
Vaccine. 2006 Feb 6;24(6):826-34
pubmed: 16140429
Nat Struct Mol Biol. 2011 Feb;18(2):135-41
pubmed: 21217702
Nat Rev Dis Primers. 2016 Jul 14;2:16049
pubmed: 27411684
J Infect Dis. 1977 Aug;136(2):229-38
pubmed: 894077
J Virol. 2000 Jul;74(14):6643-7
pubmed: 10864679
Clin Infect Dis. 2017 Jul 15;65(2):226-232
pubmed: 28387784
Virology. 1992 Jun;188(2):910-5
pubmed: 1585658
PLoS Pathog. 2011 Jun;7(6):e1002058
pubmed: 21655106
Microbiol Immunol. 2003;47(8):613-7
pubmed: 14524622
Neuropathology. 2008 Dec;28(6):621-6
pubmed: 18384516
mBio. 2015 Feb 10;6(1):
pubmed: 25670774
J Virol. 2001 Feb;75(4):1594-600
pubmed: 11160657
Microbiol Immunol. 2006;50(7):525-34
pubmed: 16858143
PLoS Pathog. 2011 Aug;7(8):e1002240
pubmed: 21901103
Mol Cell Biol. 1987 Jul;7(7):2538-44
pubmed: 3112559
Microbiol Immunol. 1977;21(4):193-205
pubmed: 875761
Virology. 1999 Apr 10;256(2):340-50
pubmed: 10191199
J Virol. 2005 Nov;79(22):14346-54
pubmed: 16254369
mSphere. 2018 May 9;3(3):
pubmed: 29743202
Virology. 2016 Jan;487:141-9
pubmed: 26524513
Lancet. 2022 Feb 12;399(10325):678-690
pubmed: 35093206
Curr Opin Virol. 2014 Apr;5:24-33
pubmed: 24530984
J Virol. 1998 Feb;72(2):1224-34
pubmed: 9445022
J Virol. 2015 Jan 15;89(2):1230-41
pubmed: 25392208
J Virol. 1990 Feb;64(2):700-5
pubmed: 2153236
Lab Invest. 2002 Apr;82(4):403-9
pubmed: 11950898
Trends Microbiol. 2019 Feb;27(2):164-175
pubmed: 30220445
PLoS One. 2013 Jul 09;8(7):e68909
pubmed: 23874807
FEBS Lett. 2015 Jan 2;589(1):152-8
pubmed: 25479085
J Gen Virol. 2021 Oct;102(10):
pubmed: 34643483
Virology. 1986 Oct 15;154(1):97-107
pubmed: 3750847
J Virol. 2011 Nov;85(22):11871-82
pubmed: 21917959
J Virol. 2002 Jul;76(13):6743-9
pubmed: 12050387
Viruses. 2022 Mar 31;14(4):
pubmed: 35458463
Virology. 1987 Oct;160(2):523-6
pubmed: 3660593
Virus Genes. 2000;20(3):253-7
pubmed: 10949953
J Virol. 2020 Jan 6;94(2):
pubmed: 31619560
Nature. 2011 Nov 02;480(7378):530-3
pubmed: 22048310
J Virol. 1985 Mar;53(3):908-19
pubmed: 3882996
Virology. 1989 Aug;171(2):525-34
pubmed: 2788328
J Med Virol. 2011 Sep;83(9):1614-23
pubmed: 21739453
J Virol. 2013 Feb;87(4):1974-84
pubmed: 23221571
mBio. 2021 Jun 29;12(3):e0079921
pubmed: 34061592
Virology. 1989 Dec;173(2):415-25
pubmed: 2596022