Progressive Rehabilitation Based on EMG Gesture Classification and an MPC-Driven Exoskeleton.
electromyography (EMG)
exoskeleton
gesture classification
model predictive control (MPC)
rehabilitation
stroke
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
27 Jun 2023
27 Jun 2023
Historique:
received:
23
05
2023
revised:
13
06
2023
accepted:
15
06
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
Stroke is a leading cause of disability and death worldwide, with a prevalence of 200 millions of cases worldwide. Motor disability is presented in 80% of patients. In this context, physical rehabilitation plays a fundamental role for gradually recovery of mobility. In this work, we designed a robotic hand exoskeleton to support rehabilitation of patients after a stroke episode. The system acquires electromyographic (EMG) signals in the forearm, and automatically estimates the movement intention for five gestures. Subsequently, we developed a predictive adaptive control of the exoskeleton to compensate for three different levels of muscle fatigue during the rehabilitation therapy exercises. The proposed system could be used to assist the rehabilitation therapy of the patients by providing a repetitive, intense, and adaptive assistance.
Identifiants
pubmed: 37508798
pii: bioengineering10070770
doi: 10.3390/bioengineering10070770
pmc: PMC10376571
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : The Ministry of Science Technology and Innovation (MinCiencias)
ID : 622-2022
Références
J Clin Med. 2020 Oct 21;9(10):
pubmed: 33096678
Front Neurol. 2017 Apr 03;8:120
pubmed: 28421032
Sensors (Basel). 2022 Oct 09;22(19):
pubmed: 36236742
Front Hum Neurosci. 2016 Sep 13;10:442
pubmed: 27679565
J Med Syst. 2012 Apr;36(2):841-51
pubmed: 20703649
Eur J Neurol. 2021 Dec;28(12):3883-3920
pubmed: 34476868
J Rehabil Med. 2011 Feb;43(3):257-63
pubmed: 21305243
Front Bioeng Biotechnol. 2021 Jun 09;9:548357
pubmed: 34178951
IEEE J Biomed Health Inform. 2013 May;17(3):608-18
pubmed: 24592463
J Rehabil Med. 2011 Feb;43(3):181-9
pubmed: 21305232
Med Biol Eng Comput. 2015 Jul;53(7):577-88
pubmed: 25752771
Sensors (Basel). 2011;11(4):3545-94
pubmed: 22163810
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):485-94
pubmed: 25955989
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4627-30
pubmed: 26737325
Neuron. 2020 Feb 19;105(4):604-620
pubmed: 32078796
IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65
pubmed: 18632358
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70
pubmed: 21292599
Biol Cybern. 2012 Dec;106(11-12):741-55
pubmed: 23132432
IEEE J Transl Eng Health Med. 2020 Sep 15;8:2100812
pubmed: 33014638
Adv Exp Med Biol. 2009;629:559-75
pubmed: 19227521
IEEE Trans Neural Syst Rehabil Eng. 2022;30:96-107
pubmed: 34995190
Front Bioeng Biotechnol. 2018 Feb 26;6:13
pubmed: 29536005
Sensors (Basel). 2021 Jun 26;21(13):
pubmed: 34206714
IEEE J Biomed Health Inform. 2022 Apr;26(4):1718-1725
pubmed: 34699373
Lancet Neurol. 2017 Oct;16(10):826-836
pubmed: 28920888
Ann Rheum Dis. 1962 Jun;21:164-70
pubmed: 14461996
Lancet Neurol. 2009 Aug;8(8):741-54
pubmed: 19608100
Curr Treat Options Cardiovasc Med. 2007 Jun;9(3):221-8
pubmed: 17601386
Hum Mov Sci. 2022 Feb;81:102912
pubmed: 34929434
IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
pubmed: 8468080
J Electromyogr Kinesiol. 2016 Oct;30:216-30
pubmed: 27529668
J Clin Med. 2023 Jan 10;12(2):
pubmed: 36675486
Int J Rehabil Res. 2015 Jun;38(2):173-80
pubmed: 25603539