Fractal Derivatives, Fractional Derivatives and
fractal derivatives
fractional derivatives
fractional differential equations
nonextensive statistics
q-calculus
Journal
Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874
Informations de publication
Date de publication:
30 Jun 2023
30 Jun 2023
Historique:
received:
15
05
2023
revised:
19
06
2023
accepted:
27
06
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
This work presents an analysis of fractional derivatives and fractal derivatives, discussing their differences and similarities. The fractal derivative is closely connected to Haussdorff's concepts of fractional dimension geometry. The paper distinguishes between the derivative of a function on a fractal domain and the derivative of a fractal function, where the image is a fractal space. Different continuous approximations for the fractal derivative are discussed, and it is shown that the
Identifiants
pubmed: 37509954
pii: e25071008
doi: 10.3390/e25071008
pmc: PMC10378034
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : INCT-FNA
ID : 464898/2014-5
Références
PLoS One. 2021 Sep 29;16(9):e0257855
pubmed: 34587173
Entropy (Basel). 2022 Feb 27;24(3):
pubmed: 35327854
Appl Math Model. 2023 Sep;121:166-184
pubmed: 37151217