Fractal Derivatives, Fractional Derivatives and

fractal derivatives fractional derivatives fractional differential equations nonextensive statistics q-calculus

Journal

Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874

Informations de publication

Date de publication:
30 Jun 2023
Historique:
received: 15 05 2023
revised: 19 06 2023
accepted: 27 06 2023
medline: 29 7 2023
pubmed: 29 7 2023
entrez: 29 7 2023
Statut: epublish

Résumé

This work presents an analysis of fractional derivatives and fractal derivatives, discussing their differences and similarities. The fractal derivative is closely connected to Haussdorff's concepts of fractional dimension geometry. The paper distinguishes between the derivative of a function on a fractal domain and the derivative of a fractal function, where the image is a fractal space. Different continuous approximations for the fractal derivative are discussed, and it is shown that the

Identifiants

pubmed: 37509954
pii: e25071008
doi: 10.3390/e25071008
pmc: PMC10378034
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : INCT-FNA
ID : 464898/2014-5

Références

PLoS One. 2021 Sep 29;16(9):e0257855
pubmed: 34587173
Entropy (Basel). 2022 Feb 27;24(3):
pubmed: 35327854
Appl Math Model. 2023 Sep;121:166-184
pubmed: 37151217

Auteurs

Airton Deppman (A)

Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, Brazil.

Eugenio Megías (E)

Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain.

Roman Pasechnik (R)

Department of Physics, Lund University, Sölvegatan 14A, SE-22362 Lund, Sweden.

Classifications MeSH