Quantum Adversarial Transfer Learning.
quantum computation
quantum generative adversarial network
quantum machine learning
quantum transfer learning
Journal
Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874
Informations de publication
Date de publication:
20 Jul 2023
20 Jul 2023
Historique:
received:
08
05
2023
revised:
09
06
2023
accepted:
08
07
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
Adversarial transfer learning is a machine learning method that employs an adversarial training process to learn the datasets of different domains. Recently, this method has attracted attention because it can efficiently decouple the requirements of tasks from insufficient target data. In this study, we introduce the notion of quantum adversarial transfer learning, where data are completely encoded by quantum states. A measurement-based judgment of the data label and a quantum subroutine to compute the gradients are discussed in detail. We also prove that our proposal has an exponential advantage over its classical counterparts in terms of computing resources such as the gate number of the circuits and the size of the storage required for the generated data. Finally, numerical experiments demonstrate that our model can be successfully trained, achieving high accuracy on certain datasets.
Identifiants
pubmed: 37510037
pii: e25071090
doi: 10.3390/e25071090
pmc: PMC10378263
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National key R & D Program of China
ID : 2017YFA0303800
Organisme : National Natural Science Foundation of China
ID : No.91850205 and No.11904022.
Références
Phys Rev Lett. 2017 Nov 3;119(18):180509
pubmed: 29219599
Phys Rev Lett. 2010 Feb 12;104(6):063603
pubmed: 20366821
Phys Rev Lett. 2018 Feb 2;120(5):050502
pubmed: 29481180
Phys Rev E. 2020 May;101(5-1):053301
pubmed: 32575207
Phys Rev Lett. 2019 Feb 15;122(6):065301
pubmed: 30822082
Phys Rev Lett. 2015 Apr 10;114(14):140504
pubmed: 25910101
Phys Rev Lett. 2014 Sep 26;113(13):130503
pubmed: 25302877
Phys Rev Lett. 2016 Sep 23;117(13):130501
pubmed: 27715099
Nat Commun. 2012 Mar 27;3:762
pubmed: 22453835
Science. 2015 Jul 17;349(6245):255-60
pubmed: 26185243
Phys Rev Lett. 2019 Feb 1;122(4):040504
pubmed: 30768345
Sci Adv. 2019 Jan 25;5(1):eaav2761
pubmed: 30746476
Phys Rev Lett. 2015 Mar 20;114(11):110504
pubmed: 25839250
Sci Bull (Beijing). 2017 Jul 30;62(14):1025-1029
pubmed: 36659494
Nat Commun. 2014 Jul 23;5:4213
pubmed: 25055053
Nature. 2017 Sep 13;549(7671):242-246
pubmed: 28905916
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):3999-4002
pubmed: 15024100
Phys Rev Lett. 2022 Jun 3;128(22):220505
pubmed: 35714256
Nature. 2017 Sep 13;549(7671):195-202
pubmed: 28905917
Neural Netw. 2021 Jul;139:17-23
pubmed: 33662649
Nature. 2019 Mar;567(7747):209-212
pubmed: 30867609
Phys Rev Lett. 2018 Jul 27;121(4):040502
pubmed: 30095952