Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes.

analysis classification diabetes machine learning modeling

Journal

Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402

Informations de publication

Date de publication:
15 Jul 2023
Historique:
received: 31 05 2023
revised: 23 06 2023
accepted: 07 07 2023
medline: 29 7 2023
pubmed: 29 7 2023
entrez: 29 7 2023
Statut: epublish

Résumé

Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.

Identifiants

pubmed: 37510127
pii: diagnostics13142383
doi: 10.3390/diagnostics13142383
pmc: PMC10378239
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

BMJ Open Diabetes Res Care. 2022 Jan;10(1):
pubmed: 35046014
Sci Total Environ. 2022 Apr 20;818:151760
pubmed: 34801498
Front Genet. 2018 Nov 06;9:515
pubmed: 30459809
Comput Methods Programs Biomed. 2022 Nov;226:107180
pubmed: 36279639
Comput Intell Neurosci. 2022 Apr 15;2022:3820360
pubmed: 35463255
Sci Total Environ. 2022 Feb 1;806(Pt 2):150674
pubmed: 34597539
Diagnostics (Basel). 2022 Nov 14;12(11):
pubmed: 36428850
Heliyon. 2022 Sep 29;8(10):e10772
pubmed: 36203910
BMC Cardiovasc Disord. 2023 Jan 25;23(1):49
pubmed: 36698087
Diabetes Metab Syndr. 2023 Jan;17(1):102690
pubmed: 36527769
Comput Methods Programs Biomed. 2017 Dec;152:23-34
pubmed: 29054258
Biomedicines. 2022 Mar 16;10(3):
pubmed: 35327488
Sensors (Basel). 2020 May 06;20(9):
pubmed: 32384737
Diabetes Care. 2018 Jan;41(Suppl 1):S13-S27
pubmed: 29222373

Auteurs

Orlando Iparraguirre-Villanueva (O)

Facultad de Ingeniería y Arquitectura, Universidad Autónoma del Perú, Lima 15842, Peru.

Karina Espinola-Linares (K)

Facultad de Ingeniería, Universidad Tecnológica del Perú, Chimbote 02710, Peru.

Rosalynn Ornella Flores Castañeda (RO)

Facultad de Arquitectura e Ingeniería, Universidad César Vallejo, Lima 15314, Peru.

Michael Cabanillas-Carbonell (M)

Facultad de Ingeniería, Universidad Privada del Norte, Lima 15083, Peru.

Classifications MeSH