Graphene Hybrid Metasurfaces for Mid-Infrared Molecular Sensors.

gas sensor graphene metasurface mid-infrared photodetector

Journal

Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216

Informations de publication

Date de publication:
20 Jul 2023
Historique:
received: 15 06 2023
revised: 12 07 2023
accepted: 18 07 2023
medline: 29 7 2023
pubmed: 29 7 2023
entrez: 29 7 2023
Statut: epublish

Résumé

We integrated graphene with asymmetric metal metasurfaces and optimised the geometry dependent photoresponse towards optoelectronic molecular sensor devices. Through careful tuning and characterisation, combining finite-difference time-domain simulations, electron-beam lithography-based nanofabrication, and micro-Fourier transform infrared spectroscopy, we achieved precise control over the mid-infrared peak response wavelengths, transmittance, and reflectance. Our methods enabled simple, reproducible and targeted mid-infrared molecular sensing over a wide range of geometrical parameters. With ultimate minimization potential down to atomic thicknesses and a diverse range of complimentary nanomaterial combinations, we anticipate a high impact potential of these technologies for environmental monitoring, threat detection, and point of care diagnostics.

Identifiants

pubmed: 37513124
pii: nano13142113
doi: 10.3390/nano13142113
pmc: PMC10385330
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : European Regional Development Fund
ID : 1.1.1.2/VIAA/4/20/740
Organisme : VINNOVA
ID : 2020-00797
Organisme : European Commission
ID : 739508

Références

ACS Omega. 2022 Oct 28;7(44):40324-40332
pubmed: 36385891
Opt Express. 2019 Nov 25;27(24):35914-35924
pubmed: 31878756
Nano Lett. 2011 Aug 10;11(8):3370-7
pubmed: 21766812
Sensors (Basel). 2020 Jun 23;20(12):
pubmed: 32586048
Nano Lett. 2014 Nov 12;14(11):6526-32
pubmed: 25310847
Light Sci Appl. 2017 Jun 02;6(6):e16277
pubmed: 30167262
Nature. 2019 Sep;573(7775):507-518
pubmed: 31554977
Nat Commun. 2015 Feb 24;6:6242
pubmed: 25708612
Nat Nanotechnol. 2010 Oct;5(10):722-6
pubmed: 20729834
Opt Express. 2018 Mar 5;26(5):5665-5674
pubmed: 29529768
Nat Commun. 2018 Sep 27;9(1):3956
pubmed: 30262825
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3
pubmed: 16027370
Nano Lett. 2017 May 10;17(5):3027-3034
pubmed: 28445068
Nat Commun. 2014 May 27;5:3892
pubmed: 24861488
Nat Commun. 2021 Feb 10;12(1):917
pubmed: 33568669
Nano Lett. 2014 Jul 9;14(7):3749-54
pubmed: 24940849
Science. 2013 Jun 21;340(6139):1427-30
pubmed: 23686343
Science. 2008 Jun 6;320(5881):1308
pubmed: 18388259
Nano Lett. 2013 Sep 11;13(9):4217-23
pubmed: 23941358
Sensors (Basel). 2021 Jul 31;21(15):
pubmed: 34372439
Light Sci Appl. 2018 Jun 20;7:20
pubmed: 30839627
Nano Lett. 2008 Jan;8(1):173-7
pubmed: 18085811
Nat Nanotechnol. 2009 Dec;4(12):839-43
pubmed: 19893532
Nat Nanotechnol. 2008 Aug;3(8):491-5
pubmed: 18685637
Nat Commun. 2022 Mar 16;13(1):1392
pubmed: 35296657
Nat Nanotechnol. 2010 Oct;5(10):727-31
pubmed: 20890273

Auteurs

Tom Yager (T)

Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia.

George Chikvaidze (G)

Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia.

Qin Wang (Q)

RISE Research Institutes of Sweden AB, Box 1070, SE-164 25 Kista, Sweden.

Ying Fu (Y)

School of Information Technology, Halmstad University, SE-301 18 Halmstad, Sweden.

Classifications MeSH