Evolution of Mn
ARPES
ab-initio calculations
electronic structure
magnetic topological insulator
topological phase transition
topological surface states
topological vertical heterostructure
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
24 Jul 2023
24 Jul 2023
Historique:
received:
30
06
2023
revised:
22
07
2023
accepted:
23
07
2023
medline:
29
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
One of the approaches to manipulate MnBi2Te4 properties is the magnetic dilution, which inevitably affects the interplay of magnetism and band topology in the system. In this work, we carried out angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations for analysing changes in the electronic structure of Mn1-xGexBi2Te4 that occur under parameter x variation. We consider two ways of Mn/Ge substitution: (i) bulk doping of the whole system; (ii) surface doping of the first septuple layer. For the case (i), the experimental results reveal a decrease in the value of the bulk band gap, which should be reversed by an increase when the Ge concentration reaches a certain value. Ab-initio calculations show that at Ge concentrations above 50%, there is an absence of the bulk band inversion of the Te pz and Bi pz contributions at the Γ-point with significant spatial redistribution of the states at the band gap edges into the bulk, suggesting topological phase transition in the system. For case (ii) of the vertical heterostructure Mn1-xGexBi2Te4/MnBi2Te4, it was shown that an increase of Ge concentration in the first septuple layer leads to effective modulation of the Dirac gap in the absence of significant topological surface states of spatial redistribution. The results obtained indicate that surface doping compares favorably compared to bulk doping as a method for the Dirac gap value modulation.
Identifiants
pubmed: 37513162
pii: nano13142151
doi: 10.3390/nano13142151
pmc: PMC10384094
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : St Petersburg University
ID : 94031444
Organisme : Russian Science Foundation
ID : 23-12-00016
Références
Sci Rep. 2020 Aug 6;10(1):13226
pubmed: 32764583
Nano Lett. 2017 Jun 14;17(6):3493-3500
pubmed: 28545300
Sci Adv. 2019 Jun 14;5(6):eaaw5685
pubmed: 31214654
Phys Rev B Condens Matter. 1991 Apr 15;43(11):8861-8869
pubmed: 9996554
Science. 2013 Apr 12;340(6129):167-70
pubmed: 23493424
Phys Rev Lett. 2019 Mar 15;122(10):107202
pubmed: 30932645
Phys Rev Lett. 2012 May 18;108(20):206803
pubmed: 23003165
Science. 2017 Jul 21;357(6348):294-299
pubmed: 28729508
Nat Commun. 2020 Sep 24;11(1):4821
pubmed: 32973165
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Sci Rep. 2018 Nov 27;8(1):17431
pubmed: 30479359
Nature. 2019 Dec;576(7787):416-422
pubmed: 31853084
Nano Lett. 2022 Jun 8;22(11):4307-4314
pubmed: 35604392
Phys Rev Lett. 2020 Sep 11;125(11):117205
pubmed: 32975987
Ultramicroscopy. 2017 Nov;182:85-91
pubmed: 28666139