Different Structures-Similar Effect: Do Substituted 5-(4-Methoxyphenyl)-1
allosteric inhibition
eicosanoids
lipoxygenase inhibitors
molecular dynamics
protein–protein interactions
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
14 Jul 2023
14 Jul 2023
Historique:
received:
21
05
2023
revised:
04
07
2023
accepted:
11
07
2023
medline:
31
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.
Identifiants
pubmed: 37513289
pii: molecules28145418
doi: 10.3390/molecules28145418
pmc: PMC10383952
pii:
doi:
Substances chimiques
Linoleic Acid
9KJL21T0QJ
Linoleic Acids
0
Arachidonate 15-Lipoxygenase
EC 1.13.11.33
Imidazoles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Russian Ministry of Science and High Education
ID : FSFZ-2023-0004
Organisme : Spanish "Ministerio de Ciencia, Innovación y Universidades
ID : PID2020-113764GB-I00
Déclaration de conflit d'intérêts
The authors declare no conflict of interest. The funders had no role in the design of the study or in the decision to publish the results.
Références
Adv Sci (Weinh). 2023 Feb;10(6):e2205604
pubmed: 36567268
Int J Mol Sci. 2020 Nov 09;21(21):
pubmed: 33182324
Cancer Sci. 2009 Dec;100(12):2283-91
pubmed: 19775287
J Clin Endocrinol Metab. 2014 Sep;99(9):E1713-20
pubmed: 24955608
Nucleic Acids Res. 2018 Jul 2;46(W1):W374-W379
pubmed: 29750256
Nat Rev Immunol. 2002 Oct;2(10):748-59
pubmed: 12360213
Ther Adv Endocrinol Metab. 2018 May;9(5):137-150
pubmed: 29796244
Nat Chem Biol. 2017 Jan;13(1):81-90
pubmed: 27842066
Biochim Biophys Acta. 2011 Dec;1811(12):1001-10
pubmed: 21875687
J Mol Biol. 2005 May 27;349(1):143-52
pubmed: 15876374
Blood. 2023 Jul 28;:
pubmed: 37506345
Biochim Biophys Acta. 2013 Jun;1831(6):1079-88
pubmed: 23438511
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
J Am Chem Soc. 2013 Jul 17;135(28):10404-10
pubmed: 23786234
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W368-71
pubmed: 15980491
Bioorg Med Chem Lett. 2011 Jul 15;21(14):4141-5
pubmed: 21696952
BMC Chem. 2021 Feb 18;15(1):12
pubmed: 33602331
Circ Res. 2008 Feb 1;102(2):143-5
pubmed: 18239141
J Mol Model. 2008 Aug;14(8):667-79
pubmed: 18458967
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Circ Res. 2010 Nov 12;107(10):1170-84
pubmed: 21071715
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jul;1865(7):158680
pubmed: 32151768
J Mol Biol. 2011 Jun 17;409(4):654-68
pubmed: 21530540
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4266-75
pubmed: 27412860
FEBS Lett. 2008 Jan 9;582(1):97-105
pubmed: 18053812
J Med Chem. 2022 Feb 10;65(3):1979-1995
pubmed: 35073698
J Mol Biol. 1997 Apr 4;267(3):727-48
pubmed: 9126849
Biochim Biophys Acta. 2006 Dec;1761(12):1498-505
pubmed: 17052953
J Biol Chem. 2004 Jan 30;279(5):3717-25
pubmed: 14594811
Proteins. 2012 Mar;80(3):703-12
pubmed: 22189720
Bioorg Med Chem Lett. 2005 Mar 1;15(5):1435-40
pubmed: 15713402
J Clin Invest. 1999 Jun;103(11):1597-604
pubmed: 10359569
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88
pubmed: 26592383
PLoS One. 2009 Sep 29;4(9):e7250
pubmed: 19787041
Br J Pharmacol. 1997 Apr;120(7):1199-206
pubmed: 9105693
Expert Rev Clin Immunol. 2006 Jul;2(4):649-58
pubmed: 20477620
Int J Mol Sci. 2021 Mar 23;22(6):
pubmed: 33807076
Blood. 1998 Jan 1;91(1):64-74
pubmed: 9414270
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7971-7980
pubmed: 32205444
Nat Chem Biol. 2020 Mar;16(3):278-290
pubmed: 32080625
J Med Chem. 2015 Oct 8;58(19):7850-62
pubmed: 26331552
Proteins. 2008 Feb 15;70(3):1023-32
pubmed: 17847087
Cancer Metastasis Rev. 2007 Dec;26(3-4):503-24
pubmed: 17943411
Bioorg Med Chem Lett. 2007 Sep 15;17(18):5115-20
pubmed: 17656086
J Biol Chem. 2002 Oct 25;277(43):40549-56
pubmed: 12189136
PLoS One. 2015 Jul 14;10(7):e0132627
pubmed: 26171612
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41
pubmed: 22570416
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Mar;1864(3):372-385
pubmed: 30599203
J Med Chem. 2014 May 22;57(10):4035-48
pubmed: 24684213
ACS Chem Biol. 2019 Dec 20;14(12):2768-2782
pubmed: 31664810