Thermodynamic Evidence for Type II Porous Liquids.
Journal
Industrial & engineering chemistry research
ISSN: 0888-5885
Titre abrégé: Ind Eng Chem Res
Pays: United States
ID NLM: 9882836
Informations de publication
Date de publication:
26 Jul 2023
26 Jul 2023
Historique:
received:
12
04
2023
revised:
16
06
2023
accepted:
27
06
2023
medline:
31
7
2023
pubmed:
31
7
2023
entrez:
31
7
2023
Statut:
epublish
Résumé
Porous liquids are an emerging class of microporous materials where intrinsic, stable porosity is imbued in a liquid material. Many porous liquids are prepared by dispersing porous solids in bulky solvents; these can be contrasted by the method of dissolving microporous molecules. We highlight the latter "Type II" porous liquids-which are stable thermodynamic solutions with demonstrable colligative properties. This feature significantly impacts the ultimate utility of the liquid for various end-use applications. We also describe a facile method for determining if a Type II porous liquid candidate is "porous" based on assessing the partial molar volume of the porous host molecule dissolved in the solvent by measuring the densities of candidate solutions. Conventional CO
Identifiants
pubmed: 37520782
doi: 10.1021/acs.iecr.3c01201
pmc: PMC10375470
doi:
Types de publication
Journal Article
Langues
eng
Pagination
11689-11696Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
ACS Appl Mater Interfaces. 2022 May 11;:
pubmed: 35544409
Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11909-11912
pubmed: 29998540
Angew Chem Int Ed Engl. 2020 May 4;59(19):7362-7366
pubmed: 31999036
J Am Chem Soc. 2016 Feb 10;138(5):1653-9
pubmed: 26757885
ACS Cent Sci. 2017 Jun 28;3(6):544-553
pubmed: 28691065
Nat Chem. 2020 Mar;12(3):270-275
pubmed: 32042136
Nature. 2022 Aug;608(7924):712-718
pubmed: 36002487
J Am Chem Soc. 2014 Jan 29;136(4):1438-48
pubmed: 24410310
Chem Commun (Camb). 2015 Mar 25;51(24):5077-80
pubmed: 25712858
Phys Chem Chem Phys. 2014 May 28;16(20):9422-31
pubmed: 24722729
Chem Sci. 2017 Apr 1;8(4):2640-2651
pubmed: 28553499
Nat Mater. 2021 Sep;20(9):1179-1187
pubmed: 33859380
Nat Mater. 2009 Dec;8(12):973-8
pubmed: 19855385
Small. 2020 Mar;16(11):e1907016
pubmed: 32083785
Angew Chem Int Ed Engl. 2015 Jan 12;54(3):932-6
pubmed: 25404583
Nature. 2015 Nov 12;527(7577):216-20
pubmed: 26560299
Nanoscale. 2019 Jan 23;11(4):1515-1519
pubmed: 30648721
J Am Chem Soc. 2022 Mar 9;144(9):4071-4079
pubmed: 35170940
ACS Appl Mater Interfaces. 2022 Apr 27;14(16):18005-18015
pubmed: 35420771
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2600-2609
pubmed: 33403847
Chem Soc Rev. 2015 Oct 21;44(20):7177-206
pubmed: 25946705
Chem Sci. 2019 Aug 28;10(41):9454-9465
pubmed: 32110304
Chemistry. 2007;13(11):3020-5
pubmed: 17351993
ACS Appl Mater Interfaces. 2018 Jan 10;10(1):32-36
pubmed: 29277992
Mater Horiz. 2022 Jun 6;9(6):1577-1601
pubmed: 35373794
Chem Sci. 2022 Apr 25;13(18):5042-5054
pubmed: 35655552
Chem Sci. 2020 Jan 9;11(8):2077-2084
pubmed: 34123297
Adv Mater. 2016 Jul;28(27):5712-6
pubmed: 27002308
Phys Chem Chem Phys. 2021 May 5;23(17):10311-10320
pubmed: 33951133
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):932-936
pubmed: 33350302
J Am Chem Soc. 2018 Sep 12;140(36):11153-11157
pubmed: 30122041
Chem Commun (Camb). 2015 Dec 21;51(98):17390-3
pubmed: 26463103