A statistical algorithm for outbreak detection in multisite settings: an application to sick leave monitoring.


Journal

Bioinformatics advances
ISSN: 2635-0041
Titre abrégé: Bioinform Adv
Pays: England
ID NLM: 9918282081306676

Informations de publication

Date de publication:
2023
Historique:
received: 09 12 2022
revised: 05 06 2023
accepted: 13 06 2023
medline: 31 7 2023
pubmed: 31 7 2023
entrez: 31 7 2023
Statut: epublish

Résumé

Public health authorities monitor cases of health-related problems over time using surveillance algorithms that detect unusually high increases in the number of cases, namely aberrations. Statistical aberrations signal outbreaks when further investigation reveals epidemiological significance. The increasing availability and diversity of epidemiological data and the most recent epidemic threats call for more accurate surveillance algorithms that not just detect aberration times but also detect locations. Sick leave data, for instance, can be monitored across companies to identify companies-related aberrations. In this context, we develop an extension to multisite surveillance of a routinely used aberration detection algorithm, the quasi-Poisson regression Farrington Flexible algorithm. The new algorithm consists of a negative-binomial mixed effects regression model with a random effects term for sites and a new reweighting procedure reducing the effect of past aberrations. A wide range of simulations shows that, compared with Farrington Flexible, the new algorithm produces better false positive rates and similar probabilities of detecting genuine outbreaks, for case counts that exceed historical baselines by 3 SD. As expected, higher surges lead to lower false positive rates and higher probabilities of detecting true outbreaks. The new algorithm provides better detection of true outbreaks, reaching 100%, when cases exceed eight baseline standard deviations. We apply our algorithm to sick leave rates in the context of COVID-19 and find that it detects the pandemic effect. The new algorithm is easily implementable over a range of contrasting data scenarios, providing good overall performance and new perspectives for multisite surveillance. All the analyses are performed in the R statistical software using the package glmmTMB. The code for performing the analyses and for generating the simulations can be found online at the following link: https://github.com/TomDuchemin/mixed_surveillance. a.noufaily@warwick.ac.uk.

Identifiants

pubmed: 37521307
doi: 10.1093/bioadv/vbad079
pii: vbad079
pmc: PMC10374493
doi:

Types de publication

Journal Article

Langues

eng

Pagination

vbad079

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press.

Déclaration de conflit d'intérêts

The authors declare no conflicts of interest.

Références

J Occup Environ Med. 2019 Aug;61(8):e340-e347
pubmed: 31348419
PLoS One. 2017 Jul 17;12(7):e0181227
pubmed: 28715489
Stat Med. 2021 Dec 10;40(28):6277-6294
pubmed: 34491590
Emerg Infect Dis. 2012 May;18(5):885-7
pubmed: 22516519
Bioinformatics. 2015 Nov 15;31(22):3660-5
pubmed: 26198105
Int J Inj Contr Saf Promot. 2014;21(2):154-62
pubmed: 23656206
Epidemiol Infect. 2011 Sep;139(9):1388-95
pubmed: 21108871
J Biomed Inform. 2005 Apr;38(2):99-113
pubmed: 15797000
BMC Infect Dis. 2021 Jan 11;21(1):52
pubmed: 33430793
Lancet. 2022 Jan 8;399(10320):152-160
pubmed: 34741818
Bioinformatics. 2019 Sep 1;35(17):3110-3118
pubmed: 30689731
PLoS One. 2013;8(1):e55205
pubmed: 23372837
Occup Med (Lond). 2002 Aug;52(5):265-9
pubmed: 12181375
Euro Surveill. 2010 Sep 09;15(36):
pubmed: 20843470
Occup Med (Lond). 2006 Oct;56(7):469-74
pubmed: 16818473
Scand J Work Environ Health. 2018 May 1;44(3):274-282
pubmed: 29363714
Sci Total Environ. 2020 Aug 1;728:138764
pubmed: 32387778
Stat Med. 2013 Mar 30;32(7):1206-22
pubmed: 22941770

Auteurs

Tom Duchemin (T)

Conservatoire National des Arts et Métiers, Paris, France.

Angela Noufaily (A)

Clinical Trials Unit, Warwick Medical School, Coventry, UK.

Mounia N Hocine (MN)

Conservatoire National des Arts et Métiers, Paris, France.

Classifications MeSH